Half a billion people live with little vitamin D from the sun
Vitamin D deficiency in Europeans today and in Viking settlers of Greenland
Biochemistry (Moscow), December 2016, Volume 81, Issue 12, pp 1492–1497
Phenoptosis (Special Issue) Review, First Online: 18 Dec 2016, DOI: 10.1134/S0006297916120117
H. GöringEmail authorS. Koshuchowa
The vast majority of the Earth’s population lives between the 20th and 40th parallel north and south. It seems that right here humans have found the best living conditions relating not only to temperature and food recourses, but also to UV radiation necessary for the production of vitamin D by human skin. An exception to this general rule is Europe.
Nearly half a billion people live between the 40th and 60th parallel north of the equator despite the fact that the amounts of UV radiation there are much lower. Moreover, since the time of the Vikings, there has always been a part of the European population that lived even further north than the 60th parallel (the northern parts of Europe, including Greenland).
In this work, we present the potential role that vitamin D deficiency might have played in the extinction of the Vikings of Greenland. We analyze factors that contribute to the discrepancy between the theoretical distribution of areas with vitamin D deficiency and today’s reality, like the impact of civilization, religious traditions, as well as vitamin D supplementation in food products and as a biologically active dietary additive. The global migration of people on a scale and speed never seen before is now even more important for this discrepancy)
Original Russian Text © H. Göring, S. Koshuchowa, 2016, published in Biokhimiya, 2016, Vol. 81, No. 12, pp. 1777–1783
📄 Download the PDF from VitaminDWiki
References
1)Göring, H., and Koshuchowa, S. (2015) Vitamin D–the sun hormone. Life in environmental mismatch, Biochemistry (Moscow), 80, 14–28)CrossRefGoogle Scholar
2)Villmoare, B., Kimbel, W. H., Seyoum, C., Campisano, C. J., DiMaggio, E. N., Rowan, J., Braun, D. R., Arrowsmith, J. R., and Reed, K. E. (2015) Early homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia, Science, 347, 1352–1355)Google Scholar
3)Kummu, M., and Varis, O. (2011) The world by latitudes: A global analysis of human population, development level and environment across the north-south axis over the past half century, Appl. Geogr., 31, 495–507)CrossRefGoogle Scholar
4)Grigalavicius, M., Juzeniene, A., Baturaite, Z., Dahlback, A., and Moan, J. (2013) Biologically efficient solar radiation: vitamin D production and induction of cutaneous malignant melanoma, Dermatoendocrinology, 5, 150–158)CrossRefGoogle Scholar
5)Jablonski, N. G., and Chaplin, G. (2010) Human skin pigmentation as an adaption to UV radiation, Proc. Natl. Acad. Sci. USA, 107, 8962–8968)CrossRefPubMedPubMedCentralGoogle Scholar
6)Jablonski, N. G., and Chaplin, G. (2012) Human skin pigmentation, migration and disease susceptibility, Philos. Trans. R Soc. Lond. B Biol. Sci., 367, 785–792)CrossRefPubMedPubMedCentralGoogle Scholar
7)Holick, M. F. (2013) Vitamin D and health: evolution, biologic functions, and recommendeddietary intakes for vitamin D, in Vitamin D Physiology, Molecular Biology, and Clinical Applications (Holick, M. F., ed.) Humana Press Inc, New York, pp. 3–33)Google Scholar
8)Holick, M. F., Chen, T. C., Lu, Z., and Sauter, E. (2007) Vitamin D and skin physiology: a D-lightful story, J. Bone Miner Res., 22, Suppl. 2, V28–33)CrossRefPubMedGoogle Scholar
9)Webb, A. R., Kline, L., and Holick, M. F. (1988) Influence of saison and latitudeon the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin, J. Clin. Endocrinol. Metab., 67, 373–378)CrossRefPubMedGoogle Scholar
10)Jablonski, N. G., and Chaplin, G. (2000) The evolution of human skin coloration, J. Hum. Evol., 39, 57–106) CrossRefPubMedGoogle Scholar
11)Gillie, O. (2012) The Scot’s paradox: can sun exposure, or lack of it, explain major paradoxes in epidemiology? Anticancer Res., 32, 237–248)PubMedGoogle Scholar
12)Gillie, O. (2010) Sunlight robbery: A critique of public health policy on vitamin D in the UK, Mol. Nutr. Food Res., 54, 1148–1163)PubMedGoogle Scholar
13)Gillie, O. (2016) Controlled trials of vitamin D, causality and type 2 statistical error, Public Health Nutr., 19, 409–414)CrossRefPubMedGoogle Scholar
14)Hanlon, P., Lawder, R., and Buchanan, D. (2005) Why is mortality higher in Scotland than in England and Wales? Decreasing influence of socioeconomic deprivation between 1981 and 2001 supports the existence of the “Scottish effect”, J. Public Health (Oxford), 27, 199–204)CrossRefGoogle Scholar
15)Chaplin, G., and Jablonski, N. G. (2013) The human environment and the vitamin D compromise: Scotland as a case study in human biocultural adaptation and disease susceptibility, Hum. Biol., 85, 529–552)CrossRefPubMedGoogle Scholar
16)Pludowski, P., Karczmarewicz, E., Bayer, M., Carter, G., Chlebna-Sokol, D., Czech-Kowalska, J., Debski, R., Decsi, T., Dobrzanska, A., Franek, E., Gluszko, P., Grant, W. B., Holick, M. F., Yankovskaya, L., Konstantynowicz, J., Ksiazyk, J. B., Ksiezopolska-Orlowska, K., Lewinski, A., Litwin, M., Lohner, S., Lorenc, R. S., Lukaszkiewicz, J., Marcinowska-Suchowierska, E., Milewicz, A., Misiorowski, W., Nowicki, M., Povoroznyuk, V., Rozentryt, P., Rudenka, E., Shoenfeld, Y., Socha, P., Solnica, B., Szalecki, M., Talalaj, M., Varbiro, S., and Zmijewski, M. A. (2013) Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe–recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency, Endokrynol. Pol., 64, 319–327)CrossRefPubMedGoogle Scholar
17)Pludowski, P., Grant, W. B., Bhattoa, H. P., Bayer, M., Povoroznyuk, V., Rudenka, E., Ramanau, H., Varbiro, S., Rudenka, A., Karczmarewicz, E., Lorenc, R., Czech-Kowalska, J., and Konstantynowicz, J. (2014) Vitamin D status in Central Europe, Int. J. Endocrinol., 589587)Google Scholar
18)Norlund, P. (1937) Wikingersiedlungen in Grönland. Ihre Entstehung und Ihr Schicksal, Curt Kabitzsch Verlag, Leipzig)Google Scholar
19)Keller, L., and Waller, D. (2002) Inbreeding effects in wild population, Trends Ecol. Evol., 17, 230–241)CrossRefGoogle Scholar
20)Acevedo-Whitehouse, K., Gulland, F., Greig, D., and Amos, W. (2003) Inbreeding: disease susceptibility in California sea lions, Nature, 422, 35)CrossRefPubMedGoogle Scholar
21)McParland, S., Kearney, J. F., Rath, M., and Berry, D. P. (2007) Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein-Friesians, J. Dairy Sci., 90, 4411–4419)CrossRefGoogle Scholar
22)Huisman, J., Kruuk, L., Ellis, P., Clutton-Brock, T. H., and Pemberton, J. M. (2016) Inbreeding depression across the lifespan in a wild mammal population, Proc. Natl. Acad. Sci. USA, 113, 3585–3590)CrossRefPubMedPubMedCentralGoogle Scholar
23)Göring, H., and Mitchenkova, T. A. (1961) Einige Fragen der Physiologie von Maispflanzen, die eine unterschiedliche Vitalität besitzen [in Russian], Agrobiologiya (Moscow), 383–389)Google Scholar
24)Charlesworth, D., and Willis, J. (2009) The genetics of inbreding depression, Nat. Rev. Genet., 10, 783–796)CrossRefPubMedGoogle Scholar
25)Göring, H. (1963) Zellteilungsstörungen nach Selbstung bei Zea mays L., Biol. Rundschau, 1, 41–42)Google Scholar
26)Yuen, A. W. C., and Jablonski, N. G. (2010) Vitamin D: in the evolution of human skin colour, Med. Hypotheses, 74, 39–44)CrossRefPubMedGoogle Scholar
27)Murray, F. G. (1934) Pigmentation, sunlight, and nutritional disease, Am. Anthropol., 36, 438–445)CrossRefGoogle Scholar
28)Chen, T. C. Lu, Z., and Holick, M. F. (2013) Photobiology of vitamin D, in Vitamin D Physiology, Molecular Biology, and Clinical Applications (Holick, M. F., ed.) Human Press Inc., New York, pp. 35-60)Google Scholar
29)Lu, Z., Chen, T. C., and Holick, M. F. (1992) Influence of saison and timeof day on the synthesis of vitamin D3, in Biological Effects of Light (Holick, M. F., and Kligman, A. M., eds.) Walter de Gruyter, Berlin-New York, pp. 57–61)Google Scholar
30)Mithal, A., Wahl, D. A., Bonjour, J. P., Burckhardt, P., Dawson-Hughes, B., Eisman, J. A., Fulican, G. E., Joss, R. G., Lips, P., and Morales-Torres, J. (2009) Global vitamin D status and determinants of hypovitaminosis D, Osteoporos. Int., 20, 1807–1820)CrossRefPubMedGoogle Scholar
31)Brickley, M. B., Moffat, T., and Watamaniuk, L. (2014) Biocultural perspectives of vitamin D deficiency in the past, J. Anthropol. Archaeol., 36, 48–59)CrossRefGoogle Scholar
32)Bogaczewicz, J., Karczmarewicz, E., Pludowski, P., Zabek, J., and Wozniacka, A. (2016) Requirement for vitamin D supplementation in patients using photoprotection: variations in vitamin D levels and bone formation markers, Int. J. Dermatol., 55, 176–183)CrossRefGoogle Scholar
33)Grant, W. B., Wimalawansa, S. J., Holick, M. F., Cannell, J. J., Pludowski, P., Lappe, J. M., Pittaway, M., and May, P. (2015) Emphasizing the health benefits of vitamin D for those with neurodevelopmental disorders and intellectual disabilities, Nutrients, 7, 1538–1564)CrossRefPubMedPubMedCentralGoogle Scholar
34)Buyukuslu, N., Esin, K., Hizli, H., Sunal, N., Yigit, P., and Garipagaoglu, M. (2014) Clothing preference affects vitamin D status of young women, Nutr. Res., 34, 688–693) CrossRefPubMedGoogle Scholar
35)Tsur, A., Metzger, M., and Dresner-Pollak, R. (2011) Effect of different dress style on vitamin D level in healthy young Orthodox and ultra-Orthodox students in Israel, Osteoporos. Int., 22, 2895–2898)CrossRefPubMedGoogle Scholar
36)Martin, C. A., Gowda, U., and Renzaho, A. M. (2016) The prevalence of vitamin D deficiency among dark-skinned populations according to their stage of migration and region of birth: a meta-analysis, Nutrition, 32, 21–32)CrossRefPubMedGoogle Scholar
37)Zittermann, A., Pilz, S., Hoffmann, H., and Marz, W. (2016) Vitamin D and airway infections: a European perspective, Eur. J. Med. Res., 21, 14)CrossRefPubMedPubMedCentralGoogle Scholar
38)Rautiainen, S., Manson, J. E., Lichtenstein, A. H., and Sesso, H. D. (2016) Dietary supplements and disease prevention–a global overview, Nat. Rev. Endocrinol., 12, 407–420)CrossRefPubMedGoogle Scholar
39)Rubel, F., and Kottek, M. (2010) Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen–Geiger climate classification, Meteorol. Zeit., 19, 135–141)CrossRefGoogle Scholar
40)Klein Goldewijk, K., Beusen, A., and Janssen, P. (2010) Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1, Holocene, 20, 565–573)CrossRefGoogle Scholar