Childhood Infections reduced 1.3X to 3X by exclusive breastfeeding
Exclusive Breastfeeding and Vitamin D Supplementation: A Positive Synergistic Effect on Prevention of Childhood Infections?
Int. J. Environ. Res. Public Health 2022, 19(5), 2973; https://doi.org/10.3390/ijerph19052973
Raffaele Domenici † and Francesco Vierucci *,†ORCID Pediatric Unit, Saint Luca Hospital, 55100 Lucca, Italy
Human milk is the best food for infants. Breastfeeding has been associated with a reduced risk of viral and bacterial infections. Breast milk contains the perfect amount of nutrients needed to promote infant growth, except for vitamin D. Vitamin D is crucial for calcium metabolism and bone health, and it also has extra-skeletal actions, involving innate and adaptive immunity. As exclusive breastfeeding is a risk factor for vitamin D deficiency, infants should be supplemented with vitamin D at least during the first year. The promotion of breastfeeding and vitamin D supplementation represents an important objective of public health.
Releated in vitaminDwiki
175 Study References
Horta, B.L.; Victora, C.G. Long-Term Effects of Breastfeeding: A Systematic Review; World Health Organization: Geneva, Switzerland, 2013; Available online: https://apps.who.int/iris/handle/10665/79198 (accessed on 5 February 2022).
Rollins, N.C.; Bhandari, N.; Hajeebhoy, N.; Horton, S.; Lutter, C.K.; Martines, J.C.; Piwoz, E.G.; Richter, L.M.; Victora, C.G.; Lancet Breastfeeding Series Group. Why invest, and what it will take to improve breastfeeding practices? Lancet 2016, 387, 491–504. [Google Scholar] [CrossRef]
Jones, G.; Steketee, R.W.; Black, R.E.; Bhutta, Z.A.; Morris, S.S.; Bellagio Child Survival Study Group. How many child deaths can we prevent this year? Lancet 2003, 362, 65–71. [Google Scholar] [CrossRef]
Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
Bonifacino, E.; Schwartz, E.B.; Jun, H.; Wessel, C.B.; Corbelli, J.A. Effect of lactation on maternal hypertension: A systematic review. Breastfeed. Med. 2018, 13, 578–588. [Google Scholar] [CrossRef]
Walters, D.D.; Phan, L.T.H.; Mathisen, R. The cost of not breastfeeding: Global results from a new tool. Health Policy Plan. 2019, 34, 407–417. [Google Scholar] [CrossRef] [Green Version]
Domenici, R.; Lunardi, S.; Vierucci, F.; Matteucci, L.; Vaccaro, A. Breastfeeding between health and economic advantage. Rivista Italiana di Pediatria Ospedaliera 2020, 7, 24–32. (In Italian) [Google Scholar]
Zhu, X.; Zheng, H. Factors influencing peak bone mass gain. Front. Med. 2021, 15, 53–69. [Google Scholar] [CrossRef]
Saggese, G.; Vierucci, F.; Boot, A.M.; Czech-Kowalska, J.; Weber, G.; Camargo, C.A., Jr.; Mallet, E.; Fanos, M.; Shaw, N.J.; Holick, M.F. Vitamin D in childhood and adolescence: An expert position statement. Eur. J. Pediatr. 2015, 174, 565–576. [Google Scholar] [CrossRef]
Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [Green Version]
Bradley, R.; Schloss, J.; Brown, D.; Celis, D.; Finnell, J.; Hedo, R.; Honcharov, V.; Pantuso, T.; Peña, H.; Lauche, R.; et al. The effects of vitamin D on acute viral respiratory infections: A rapid review. Adv. Integr. Med. 2020, 7, 192–202. [Google Scholar] [CrossRef]
Federico, G.; Genoni, A.; Puggioni, A.; Saba, A.; Gallo, D.; Randazzo, E.; Salvatoni, A.; Toniolo, A. Vitamin D status, enterovirus infection, and type 1 diabetes in Italian children/adolescents. Pediatr. Diabetes 2018, 19, 923–929. [Google Scholar] [CrossRef]
Federico, G.; Focosi, D.; Marchi, B.; Randazzo, E.; De Donno, M.; Vierucci, F.; Bugliani, M.; Campi, F.; Scatena, F.; Saggese, G.; et al. Administering 25-hydroxyvitamin D3 in vitamin D-deficient young type 1A diabetic patients reduces reactivity against islet autoantigens. Clin. Nutr. 2014, 33, 1153–1156. [Google Scholar] [CrossRef]
Camacho-Morales, A.; Caba, M.; García-Juárez, M.; Caba-Flores, M.D.; Viveros-Contreras, R.; Martínez-Valenzuela, C. Breastfeeding contributes to physiological immune programming in the newborn. Front. Pediatr. 2021, 9, 744104. [Google Scholar] [CrossRef]
Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
Yi, D.Y.; Kim, S.Y. Human breast milk composition and function in human health: From nutritional components to microbiome and microRNAs. Nutrients 2021, 13, 3094. [Google Scholar] [CrossRef]
Yu, J.C.; Khodadadi, H.; Malik, A.; Davidson, B.; Salles, É.D.S.L.; Bhatia, J.; Hale, V.L.; Baban, B. Innate immunity of neonates and infants. Front. Immunol. 2018, 9, 1759. [Google Scholar] [CrossRef]
Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef]
Samuel, T.M.; Zhou, Q.; Giuffrida, F.; Munblit, D.; Verhasselt, V.; Thakkar, S.K. Nutritional and non-nutritional composition of human milk is modulated by maternal, infant, and methodological factors. Front. Nutr. 2020, 7, 576133. [Google Scholar] [CrossRef]
Siziba, L.P.; Lorenz, L.; Stahl, B.; Mank, M.; Marosvölgyi, T.; Decsi, T.; Rothenbacher, D.; Genuneit, J. Human milk fatty acid composition of allergic and non-allergic mothers: The Ulm SPATZ Health Study. Nutrients 2020, 12, 1740. [Google Scholar] [CrossRef]
Sidor, K.; Jarmołowska, B.; Kaczmarski, M.; Kostyra, E.; Iwan, M.; Kostyra, H. Content of beta-casomorphins in milk of women with a history of allergy. Pediatr. Allergy Immunol. 2008, 19, 587–591. [Google Scholar] [CrossRef]
Prokesová, L.; Lodinová-Zádníková, R.; Zizka, J.; Kocourková, I.; Novotná, O.; Petrásková, P.; Sterzl, I. Cytokine levels in healthy and allergic mothers and their children during the first year of life. Pediatr. Allergy Immunol. 2006, 17, 175–183. [Google Scholar] [CrossRef]
Marek, A.; Zagierski, M.; Liberek, A.; Aleksandrowicz, E.; Korzon, M.; Krzykowski, G.; Kamińska, B.; Szlagatys-Sidorkiewicz, A. TGF-beta(1), IL-10 and IL-4 in colostrum of allergic and nonallergic mothers. Acta Biochim. Pol. 2009, 56, 411–414. [Google Scholar] [CrossRef] [Green Version]
Rigotti, E.; Piacentini, G.L.; Ress, M.; Pigozzi, R.; Boner, A.L.; Peroni, D.G. Transforming growth factor-beta and interleukin-10 in breast milk and development of atopic diseases in infants. Clin. Exp. Allergy 2006, 36, 614–618. [Google Scholar] [CrossRef]
Laiho, K.; Lampi, A.M.; Hamalainen, M.; Moilanen, E.; Piironen, V.; Arvola, T.; Syrjanen, S.; Isolauri, E. Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatr. Res. 2003, 53, 642–647. [Google Scholar] [CrossRef] [Green Version]
Hettinga, K.A.; Reina, F.M.; Boeren, S.; Zhang, L.; Koppelman, G.H.; Postma, D.S.; Vervoort, J.J.; Wijga, A.H. Difference in the breast milk proteome between allergic and non-allergic mothers. PLoS ONE 2015, 10, e0122234. [Google Scholar] [CrossRef] [Green Version]
Snijders, B.E.; Damoiseaux, J.G.; Penders, J.; Kummeling, I.; Stelma, F.F.; van Ree, R.; van den Brandt, P.A.; Thijs, C. Cytokines and soluble CD14 in breast milk in relation with atopic manifestations in mother and infant (KOALA Study). Clin. Exp. Allergy 2006, 36, 1609–1615. [Google Scholar] [CrossRef]
Lauritzen, L.; Halkjaer, L.B.; Mikkelsen, T.B.; Olsen, S.F.; Michaelsen, K.F.; Loland, L.; Bisgaard, H. Fatty acid composition of human milk in atopic Danish mothers. Am. J. Clin. Nutr. 2006, 84, 190–196. [Google Scholar] [CrossRef] [PubMed]
Johansson, S.; Wold, A.E.; Sandberg, A.S. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake. Clin. Exp. Allergy 2011, 41, 505–515. [Google Scholar] [CrossRef] [Green Version]
Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.L.; et al. Colostrum and mature human milk of women from London, Moscow, and Verona: Determinants of immune composition. Nutrients 2016, 8, 695. [Google Scholar] [CrossRef]
Zhu, Q.; Li, Y.; Li, N.; Han, Q.; Liu, Z.; Li, Z.; Qiu, J.; Zhang, G.; Li, F.; Tian, N. Prolonged exclusive breastfeeding, autumn birth and increased gestational age are associated with lower risk of fever in children with hand, foot, and mouth disease. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2197–2202. [Google Scholar] [CrossRef]
Netzer-Tomkins, H.; Rubin, L.; Ephros, M. Breastfeeding is associated with decreased hospitalization for neonatal fever. Breastfeed. Med. 2016, 11, 218–221. [Google Scholar] [CrossRef] [PubMed]
Boccolini, C.S.; Carvalho, M.L.; Oliveira, M.I.; Boccolini Pde, M. Breastfeeding can prevent hospitalization for pneumonia among children under 1 year old. J. Pediatr. (Rio J.) 2011, 87, 399–404. [Google Scholar] [CrossRef] [PubMed]
Nascimento, R.M.D.; Baptista, P.N.; Lopes, K.A.M.; Pimentel, A.M.; Cruz, F.D.S.P.; Ximenes, R.A.A. Protective effect of exclusive breastfeeding and effectiveness of maternal vaccination in reducing pertussis-like illness. J. Pediatr. (Rio J.) 2021, 97, 500–507. [Google Scholar] [CrossRef] [PubMed]
Jang, M.J.; Kim, Y.J.; Hong, S.; Na, J.; Hwang, J.H.; Shin, S.M.; Ahn, Y.M. Positive association of breastfeeding on respiratory syncytial virus infection in hospitalized infants: A multicenter retrospective study. Clin. Exp. Pediatr. 2020, 63, 135–140. [Google Scholar] [CrossRef] [Green Version]
Gómez-Acebo, I.; Lechosa-Muñiz, C.; Paz-Zulueta, M.; Sotos, T.D.; Alonso-Molero, J.; Llorca, J.; Cabero-Perez, M.J. Feeding in the first six months of life is associated with the probability of having bronchiolitis: A cohort study in Spain. Int. Breastfeed. J. 2021, 16, 82. [Google Scholar] [CrossRef]
Jansen, S.; Wasityastuti, W.; Astarini, F.D.; Hartini, S. Mothers’ knowledge of breastfeeding and infant feeding types affect acute respiratory infections. J. Prev. Med. Hyg. 2020, 61, E401–E408. [Google Scholar] [CrossRef]
Wang, J.; Ramette, A.; Jurca, M.; Goutaki, M.; Beardsmore, C.S.; Kuehni, C.E. Breastfeeding and respiratory tract infections during the first 2 years of life. ERJ Open Res. 2017, 3, 00143–2016. [Google Scholar] [CrossRef] [Green Version]
Pandolfi, E.; Gesualdo, F.; Rizzo, C.; Carloni, E.; Villani, A.; Concato, C.; Linardos, G.; Russo, L.; Ferretti, B.; Campagna, I.; et al. Breastfeeding and respiratory infections in the first 6 months of life: A case control study. Front. Pediatr. 2019, 7, 152. [Google Scholar] [CrossRef]
Vereen, S.; Gebretsadik, T.; Hartert, T.V.; Minton, P.; Woodward, K.; Liu, Z.; Carroll, K.N. Association between breast-feeding and severity of acute viral respiratory tract infection. Pediatr. Infect. Dis. J. 2014, 33, 986–988. [Google Scholar] [CrossRef] [Green Version]
Tromp, I.; Kiefte-de Jong, J.; Raat, H.; Jaddoe, V.; Franco, O.; Hofman, A.; de Jongste, J.; Moll, H. Breastfeeding and the risk of respiratory tract infections after infancy: The Generation R study. PLoS ONE 2017, 12, e0172763. [Google Scholar] [CrossRef] [Green Version]
Zivich, P.; Lapika, B.; Behets, F.; Yotebieng, M. Implementation of steps 1–9 to successful breastfeeding reduces the frequency of mild and severe episodes of diarrhea and respiratory tract infection among 0–6 month infants in Democratic Republic of Congo. Matern. Child Health J. 2018, 22, 762–771. [Google Scholar] [CrossRef]
Guo, C.; Zhou, Q.; Li, M.; Zhou, L.; Xu, L.; Zhang, Y.; Li, D.; Wang, Y.; Dai, W.; Li, S.; et al. Breastfeeding restored the gut microbiota in caesarean section infants and lowered the infection risk in early life. BMC Pediatr. 2020, 20, 532. [Google Scholar] [CrossRef]
Yamakawa, M.; Yorifuji, T.; Kato, T.; Inoue, S.; Tokinobu, A.; Tsuda, T.; Doi, H. Long-term effects of breastfeeding on children’s hospitalization for respiratory tract infections and diarrhea in early childhood in Japan. Matern. Child Health J. 2015, 19, 1956–1965. [Google Scholar] [CrossRef]
Raheem, R.A.; Binns, C.W.; Chih, H.J. Protective effects of breastfeeding against acute respiratory tract infections and diarrhoea: Findings of a cohort study. J. Paediatr. Child Health 2017, 53, 271–276. [Google Scholar] [CrossRef]
Tarrant, M.; Kwok, M.K.; Lam, T.H.; Leung, G.M.; Schooling, C.M. Breast-feeding and childhood hospitalizations for infections. Epidemiology 2010, 21, 847–854. [Google Scholar] [CrossRef] [Green Version]
Frank, N.M.; Lynch, K.F.; Uusitalo, U.; Yang, J.; Lönnrot, M.; Virtanen, S.M.; Hyöty, H.; Norris, J.M.; TEDDY Study Group. The relationship between breastfeeding and reported respiratory and gastrointestinal infection rates in young children. BMC Pediatr. 2019, 19, 339. [Google Scholar] [CrossRef]
Nakamura, K.; Matsumoto, N.; Nakamura, M.; Takeuchi, A.; Kageyama, M.; Yorifuji, T. Exclusively breastfeeding modifies the adverse association of late preterm birth and gastrointestinal infection: A nationwide birth cohort study. Breastfeed. Med. 2020, 15, 509–515. [Google Scholar] [CrossRef]
Morales, E.; García-Esteban, R.; Guxens, M.; Guerra, S.; Mendez, M.; Moltó-Puigmartí, C.; Lopez-Sabater, M.C.; Sunyer, J. Effects of prolonged breastfeeding and colostrum fatty acids on allergic manifestations and infections in infancy. Clin. Exp. Allergy 2012, 42, 918–928. [Google Scholar] [CrossRef]
Quigley, M.A.; Carson, C.; Sacker, A.; Kelly, Y. Exclusive breastfeeding duration and infant infection. Eur. J. Clin. Nutr. 2016, 70, 1420–1427. [Google Scholar] [CrossRef] [Green Version]
Størdal, K.; Lundeby, K.M.; Brantsæter, A.L.; Haugen, M.; Nakstad, B.; Lund-Blix, N.A.; Stene, L.C. Breast-feeding and infant hospitalization for infections: Large cohort and sibling analysis. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 225–231. [Google Scholar] [CrossRef]
Davisse-Paturet, C.; Adel-Patient, K.; Forhan, A.; Lioret, S.; Annesi-Maesano, I.; Heude, B.; Charles, M.A.; de Lauzon-Guillain, B. Breastfeeding initiation or duration and longitudinal patterns of infections up to 2 years and skin rash and respiratory symptoms up to 8 years in the EDEN mother-child cohort. Matern. Child Nutr. 2020, 16, e12935. [Google Scholar] [CrossRef] [PubMed]
Davisse-Paturet, C.; Adel-Patient, K.; Divaret-Chauveau, A.; Pierson, J.; Lioret, S.; Cheminat, M.; Dufourg, M.N.; Charles, M.A.; de Lauzon-Guillain, B. Breastfeeding status and duration and infections, hospitalizations for infections, and antibiotic use in the first two years of life in the ELFE cohort. Nutrients 2019, 11, 1607. [Google Scholar] [CrossRef] [Green Version]
Christensen, N.; Bruun, S.; Søndergaard, J.; Christesen, H.T.; Fisker, N.; Zachariassen, G.; Sangild, P.T.; Husby, S. Breastfeeding and infections in early childhood: A cohort study. Pediatrics 2020, 146, e20191892. [Google Scholar] [CrossRef] [PubMed]
Ardiç, C.; Yavuz, E. Effect of breastfeeding on common pediatric infections: A 5-year prospective cohort study. Arch. Argent. Pediatr. 2018, 116, 126–132. [Google Scholar] [CrossRef] [PubMed]
Li, R.; Dee, D.; Li, C.M.; Hoffman, H.J.; Grummer-Strawn, L.M. Breastfeeding and risk of infections at 6 years. Pediatrics 2014, 134 (Suppl. 1), S13–S20. [Google Scholar] [CrossRef] [Green Version]
Mulatu, T.; Yimer, N.B.; Alemnew, B.; Linger, M.; Liben, M.L. Exclusive breastfeeding lowers the odds of childhood diarrhea and other medical conditions: Evidence from the 2016 Ethiopian demographic and health survey. Ital. J. Pediatr. 2021, 47, 166. [Google Scholar] [CrossRef]
Ladomenou, F.; Moschandreas, J.; Kafatos, A.; Tselentis, Y.; Galanakis, E. Protective effect of exclusive breastfeeding against infections during infancy: A prospective study. Arch. Dis. Child. 2010, 95, 1004–1008. [Google Scholar] [CrossRef]
World Health Organization. Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding#tab=tab_2 (accessed on 25 February 2022).
Debes, A.K.; Kohli, A.; Walker, N.; Edmond, K.; Mullany, L.C. Time to initiation of breastfeeding and neonatal mortality and morbidity: A systematic review. BMC Public. Health. 2013, 13 (Suppl. 3), S19. [Google Scholar] [CrossRef] [Green Version]
Sankar, M.J.; Sinha, B.; Chowdhury, R.; Bhandari, N.; Taneja, S.; Martines, J.; Bahl, R. Optimal breastfeeding practices and infant and child mortality: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 3–13. [Google Scholar] [CrossRef]
Rodríguez-Gallego, I.; Leon-Larios, F.; Corrales-Gutierrez, I.; González-Sanz, J.D. Impact and effectiveness of group strategies for supporting breastfeeding after birth: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 2550. [Google Scholar] [CrossRef]
Buckland, C.; Hector, D.; Kolt, G.S.; Fahey, P.; Arora, A. Interventions to promote exclusive breastfeeding among young mothers: A systematic review and meta-analysis. Int. Breastfeed. J. 2020, 15, 102. [Google Scholar] [CrossRef]
Camacho, E.M.; Hussain, H. Cost-effectiveness evidence for strategies to promote or support breastfeeding: A systematic search and narrative literature review. BMC Pregnancy Childbirth 2020, 20, 757. [Google Scholar] [CrossRef]
Siregar, A.Y.M.; Pitriyan, P.; Walters, D. The annual cost of not breastfeeding in Indonesia: The economic burden of treating diarrhea and respiratory disease among children (<24mo) due to not breastfeeding according to recommendation. Int. Breastfeed. J. 2018, 13, 10. [Google Scholar] [CrossRef] [Green Version]
Siti, Z.M.; Joanita, S.; Khairun Nisa, J.; Balkish, M.N.; Tahir, A. Pacifier use and its association with breastfeeding and acute respiratory infection (ARI) in children below 2 years old. Med. J. Malays. 2013, 68, 125–128. [Google Scholar]
Lee, M.K.; Binns, C. Breastfeeding and the risk of infant illness in Asia: A review. Int. J. Environ. Res. Public Health 2019, 17, 186. [Google Scholar] [CrossRef] [Green Version]
Lamberti, L.M.; Zakarija-Grković, I.; Fischer Walker, C.L.; Theodoratou, E.; Nair, H.; Campbell, H.; Black, R.E. Breastfeeding for reducing the risk of pneumonia morbidity and mortality in children under two: A systematic literature review and meta-analysis. BMC Public Health 2013, 13 (Suppl. 3), S18. [Google Scholar] [CrossRef] [Green Version]
Bowatte, G.; Tham, R.; Allen, K.J.; Tan, D.J.; Lau, M.; Dai, X.; Lodge, C.J. Breastfeeding and childhood acute otitis media: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 85–95. [Google Scholar] [CrossRef] [Green Version]
Torres-Fernandez, D.; Casellas, A.; Mellado, M.J.; Calvo, C.; Bassat, Q. Acute bronchiolitis and respiratory syncytial virus seasonal transmission during the COVID-19 pandemic in Spain: A national perspective from the pediatric Spanish Society (AEP). J. Clin. Virol. 2021, 145, 105027. [Google Scholar] [CrossRef] [PubMed]
Risso, F.M.; Cozzi, G.; Volonnino, M.; Cossovel, F.; Ullmann, N.; Ciofi Degli Atti, M.L.; Amaddeo, A.; Ghirardo, S.; Cutrera, R.; Raponi, M. Social distancing during the COVID-19 pandemic resulted in a marked decrease in hospitalisations for bronchiolitis. Acta Paediatr. 2022, 111, 163–164. [Google Scholar] [CrossRef]
Van Brusselen, D.; De Troeyer, K.; Ter Haar, E.; Vander Auwera, A.; Poschet, K.; Van Nuijs, S.; Bael, A.; Stobbelaar, K.; Verhulst, S.; Van Herendael, B.; et al. Bronchiolitis in COVID-19 times: A nearly absent disease? Eur. J. Pediatr. 2021, 180, 1969–1973. [Google Scholar] [CrossRef]
Hussain, F.; Kotecha, S.; Edwards, M.O. RSV bronchiolitis season 2021 has arrived, so be prepared! Arch. Dis. Child. 2021, 106, e51. [Google Scholar] [CrossRef] [PubMed]
Ferrero, F.; Ossorio, M.F.; Rial, M.J. The return of RSV. Pediatr. Pulmonol. 2022, 57, 770–771. [Google Scholar] [CrossRef]
Delestrain, C.; Danis, K.; Hau, I.; Behillil, S.; Billard, M.N.; Krajten, L.; Cohen, R.; Bont, L.; Epaud, R. Impact of COVID-19 social distancing on viral infection in France: A delayed outbreak of RSV. Pediatr. Pulmonol. 2021, 56, 3669–3673. [Google Scholar] [CrossRef] [PubMed]
Center for Disease Control and Prevention. Protect against Flu: Caregivers of Infants and Young Children. Page Last Reviewed: 26 August 2021. Available online: https://www.cdc.gov/flu/highrisk/infantcare.htm (accessed on 5 February 2022).
Lamberti, L.M.; Fischer Walker, C.L.; Noiman, A.; Victora, C.; Black, R.E. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health 2011, 11 (Suppl. 3), S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Krawczyk, A.; Lewis, M.G.; Venkatesh, B.T.; Nair, S.N. Effect of exclusive breastfeeding on rotavirus infection among children. Indian J. Pediatr. 2016, 83, 220–225. [Google Scholar] [CrossRef]
Anderson, P.O. Breastfeeding by women with HIV infection. Breastfeed. Med. 2020, 15, 485–487. [Google Scholar] [CrossRef]
World Health Organization. Antiretroviral Drugs for Treating Pregnant Women and Preventing HIV Infection in Infants: Recommendations for a Public Health Approach; 2010 revision; World Health Organization: Geneva, Switzerland, 2010; Available online: https://apps.who.int/iris/bitstream/handle/10665/75236/9789241599818_eng.pdf?sequence=1&isAllowed=y (accessed on 20 February 2022).
World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach, 2nd ed.; World Health Organization: Geneva, Switzerland, 2016; Available online: https://apps.who.int/iris/bitstream/handle/10665/208825/9789241549684_eng.pdf?sequence=1&isAllowed=y (accessed on 20 February 2022).
Committee on Pediatric Aids. Infant feeding and transmission of human immunodeficiency virus in the United States. Pediatrics 2013, 131, 391–396. [Google Scholar] [CrossRef] [Green Version]
Centers for Disease Control and Prevention. HIV and Pregnant Women, Infants, and Children. Available online: https://www.cdc.gov/hiv/group/gender/pregnantwomen/index.html (accessed on 20 February 2022).
World Health Organization. Guideline: Updates on HIV and Infant Feeding: The Duration of Breastfeeding, and Support from Health Services to Improve Feeding Practices among Mothers Living with HIV; World Health Organization: Geneva, Switzerland, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK379872/pdf/Bookshelf_NBK379872.pdf (accessed on 20 February 2022).
Tuthill, E.L.; Tomori, C.; Van Natta, M.; Coleman, J.S. “In the United States, we say, ‘No breastfeeding,’ but that is no longer realistic”: Provider perspectives towards infant feeding among women living with HIV in the United States. J. Int. AIDS Soc. 2019, 22, e25224. [Google Scholar] [CrossRef] [Green Version]
Haberl, L.; Audebert, F.; Feiterna-Sperling, C.; Gillor, D.; Jakubowski, P.; Jonsson-Oldenbüttel, C.; Khaykin, P.; Kiener, R.; Reitter, A.; Rieke, A.; et al. Not recommended, but done: Breastfeeding with HIV in Germany. AIDS Patient Care STDS 2021, 35, 33–38. [Google Scholar] [CrossRef]
Eccles, R.; du Toit, M.; de Jongh, G.; Krüger, E. Breastfeeding outcomes and associated risks in HIV-infected and HIV-exposed infants: A systematic review. Breastfeed. Med. 2022, 17, 112–130. [Google Scholar] [CrossRef]
Li, K.M.C.; Li, K.Y.C.; Bick, D.; Chang, Y.S. Human immunodeficiency virus-positive women’s perspectives on breastfeeding with antiretrovirals: A qualitative evidence synthesis. Matern. Child. Nutr. 2021, 17, e13244. [Google Scholar] [CrossRef]
Koleilat, M.; Whaley, S.E.; Clapp, C. The impact of COVID-19 on breastfeeding rates in a low-income population. Breastfeed. Med. 2022, 17, 33–37. [Google Scholar] [CrossRef]
IFE-Core Group; UNICEF; WHO; COVID-19 Infant Feeding Working Group. Frequently Asked Questions: COVID-19 Vaccines and Breastfeeding Based on WHO Interim Recommendations (August 2021); World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-FAQ-Breast_feeding-Vaccines-2021.1 (accessed on 5 February 2022).
Bertino, E.; Moro, G.E.; De Renzi, G.; Viberti, G.; Cavallo, R.; Coscia, A.; Rubino, C.; Tonetto, P.; Sottemano, S.; Campagnoli, M.F.; et al. Detection of SARS-CoV-2 in milk from COVID-19 positive mothers and follow-up of their infants. Front. Pediatr. 2020, 8, 597699. [Google Scholar] [CrossRef]
Vardhelli, V.; Pandita, A.; Pillai, A.; Badatya, S.K. Perinatal COVID-19: Review of current evidence and practical approach towards prevention and management. Eur. J. Pediatr. 2021, 180, 1009–1031. [Google Scholar] [CrossRef]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Atanu, F.O.; El-Zamkan, M.A.; Diab, H.M.; Ahmed, A.S.; Al-Maiahy, T.J.; Obaidullah, A.J.; Alshehri, S.; Ghoniem, M.M.; et al. Maternal transmission of SARS-CoV-2: Safety of breastfeeding in infants born to infected mothers. Front. Pediatr. 2021, 9, 738263. [Google Scholar] [CrossRef]
Citu, C.; Neamtu, R.; Sorop, V.B.; Horhat, D.I.; Gorun, F.; Tudorache, E.; Gorun, O.M.; Boarta, A.; Tuta-Sas, I.; Citu, I.M. Assessing SARS-CoV-2 vertical transmission and neonatal complications. J. Clin. Med. 2021, 10, 5253. [Google Scholar] [CrossRef]
Walker, K.; Green, J.; Petty, J.; Whiting, L.; Staff, L.; Bromley, P.; Fowler, C.; Jones, L.K. Breastfeeding in the context of the COVID-19 pandemic: A discussion paper. J. Neonatal. Nurs. 2022, 28, 9–15. [Google Scholar] [CrossRef]
Pérez-Bermejo, M.; Peris-Ochando, B.; Murillo-Llorente, M.T. COVID-19: Relationship and impact on breastfeeding-a systematic review. Nutrients 2021, 13, 2972. [Google Scholar] [CrossRef]
Kollikonda, S.; Chavan, M.; Cao, C.; Yao, M.; Hackett, L.; Karnati, S. Transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through infant feeding and early care practices: A systematic review. J. Neonatal. Perinatal. Med. 2021, 1–19. [Google Scholar] [CrossRef]
Capozza, M.; Salvatore, S.; Baldassarre, M.E.; Inting, S.; Panza, R.; Fanelli, M.; Perniciaro, S.; Morlacchi, L.; Vimercati, A.; Agosti, M.; et al. Perinatal transmission and outcome of neonates born to SARS-CoV-2-positive mothers: The experience of 2 highly endemic Italian regions. Neonatology 2021, 118, 665–671. [Google Scholar] [CrossRef]
Verd, S.; Ramakers, J.; Vinuela, I.; Martin-Delgado, M.I.; Prohens, A.; Díez, R. Does breastfeeding protect children from COVID-19? An observational study from pediatric services in Majorca, Spain. Int. Breastfeed. J. 2021, 16, 83. [Google Scholar] [CrossRef] [PubMed]
Davanzo, R.; Agosti, M.; Cetin, I.; Chiantera, A.; Corsello, G.; Ramenghi, L.A.; Staiano, A.; Tavio, M.; Villani, A.; Viora, E.; et al. Breastfeeding and COVID-19 vaccination: Position statement of the Italian scientific societies. Ital. J. Pediatr. 2021, 47, 45. [Google Scholar] [CrossRef] [PubMed]
Yasmin, F.; Najeeb, H.; Moeed, A.; Naeem, U.; Asghar, M.S.; Chughtai, N.U.; Yousaf, Z.; Seboka, B.T.; Ullah, I.; Lin, C.Y.; et al. COVID-19 vaccine hesitancy in the United States: A systematic review. Front. Public Health 2021, 9, 770985. [Google Scholar] [CrossRef] [PubMed]
Garg, I.; Shekhar, R.; Sheikh, A.B.; Pal, S. COVID-19 vaccine in pregnant and lactating women: A review of existing evidence and practice guidelines. Infect. Dis. Rep. 2021, 13, 685–699. [Google Scholar] [CrossRef]
Pace, R.M.; Williams, J.E.; Järvinen, K.M.; Meehan, C.L.; Martin, M.A.; Ley, S.H.; Barbosa-Leiker, C.; Andres, A.; Yeruva, L.; Belfort, M.B.; et al. Milk from women diagnosed with COVID-19 does not contain SARS-CoV-2 RNA but has persistent levels of SARS-CoV-2-specific IgA antibodies. Front. Immunol. 2021, 12, 801797. [Google Scholar] [CrossRef]
Yeo, K.T.; Chia, W.N.; Tan, C.W.; Ong, C.; Yeo, J.G.; Zhang, J.; Poh, S.L.; Lim, A.J.M.; Sim, K.H.Z.; Sutamam, N.; et al. Neutralizing activity and SARS-CoV-2 vaccine mRNA persistence in serum and breastmilk after BNT162b2 vaccination in lactating women. Front. Immunol. 2022, 12, 783975. [Google Scholar] [CrossRef]
Narayanaswamy, V.; Pentecost, B.T.; Schoen, C.N.; Alfandari, D.; Schneider, S.S.; Baker, R.; Arcaro, K.F. Neutralizing antibodies and cytokines in breast milk after coronavirus disease 2019 (COVID-19) mRNA vaccination. Obstet. Gynecol. 2022, 139, 181–191. [Google Scholar] [CrossRef]
Scrimin, F.; Campisciano, G.; Comar, M.; Ragazzon, C.; Davanzo, R.; Quadrifoglio, M.; Giangreco, M.; Stabile, G.; Ricci, G. IgG and IgA antibodies post SARS-CoV-2 vaccine in the breast milk and sera of breastfeeding women. Vaccines 2022, 10, 125. [Google Scholar] [CrossRef]
Perez, S.E.; Luna Centeno, L.D.; Cheng, W.A.; Marentes Ruiz, C.J.; Lee, Y.; Congrave-Wilson, Z.; Powell, R.L.; Stellwagen, L.; Pannaraj, P.S. Human milk SARS-CoV-2 antibodies up to 6 months after vaccination. Pediatrics 2022, 149, e2021054260. [Google Scholar] [CrossRef]
Young, B.E.; Seppo, A.E.; Diaz, N.; Rosen-Carole, C.; Nowak-Wegrzyn, A.; Cruz Vasquez, J.M.; Ferri-Huerta, R.; Nguyen-Contant, P.; Fitzgerald, T.; Sangster, M.Y.; et al. Association of human milk antibody induction, persistence, and neutralizing capacity with SARS-CoV-2 infection vs mRNA vaccination. JAMA Pediatr. 2022, 176, 159–168. [Google Scholar] [CrossRef]
Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar] [CrossRef]
Hossein-nezhad, A.; Holick, M.F. Vitamin D for health: A global perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [Green Version]
Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
við Streym, S.; Højskov, C.S.; Møller, U.K.; Heickendorff, L.; Vestergaard, P.; Mosekilde, L.; Rejnmark, L. Vitamin D content in human breast milk: A 9-mo follow-up study. Am. J. Clin. Nutr. 2016, 103, 107–114. [Google Scholar] [CrossRef] [Green Version]
Vierucci, F.; Fusani, L.; Saba, A.; Minucciani, T.; Belluomini, M.P.; Domenici, R.; Bracco, G.L.; Vaccaro, A.; Federico, G. Gestational vitamin D3 supplementation and sun exposure significantly influence cord blood vitamin D status and 3-epi-25-hydroxyvitamin D3 levels in term newborns. Clin. Chim. Acta 2022, 524, 59–68. [Google Scholar] [CrossRef]
Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
Saggese, G.; Vierucci, F.; Prodam, F.; Cardinale, F.; Cetin, I.; Chiappini, E.; De’ Angelis, G.L.; Massari, M.; Miraglia Del Giudice, E.; Miraglia Del Giudice, M.; et al. Vitamin D in pediatric age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018, 44, 51. [Google Scholar] [CrossRef] [Green Version]
Tan, M.L.; Abrams, S.A.; Osborn, D.A. Vitamin D supplementation for term breastfed infants to prevent vitamin D deficiency and improve bone health. Cochrane Database Syst. Rev. 2020, 12, CD013046. [Google Scholar] [CrossRef]
O’Callaghan, K.M.; Taghivand, M.; Zuchniak, A.; Onoyovwi, A.; Korsiak, J.; Leung, M.; Roth, D.E. Vitamin D in breastfed infants: Systematic review of alternatives to daily supplementation. Adv. Nutr. 2020, 11, 144–159. [Google Scholar] [CrossRef]
Jullien, S. Vitamin D prophylaxis in infancy. BMC Pediatr. 2021, 21 (Suppl. 1), 319. [Google Scholar] [CrossRef]
Siddiqui, M.; Manansala, J.S.; Abdulrahman, H.A.; Nasrallah, G.K.; Smatti, M.K.; Younes, N.; Althani, A.A.; Yassine, H.M. Immune modulatory effects of vitamin D on viral infections. Nutrients 2020, 12, 2879. [Google Scholar] [CrossRef] [PubMed]
Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
Science, M.; Maguire, J.L.; Russell, M.L.; Smieja, M.; Walter, S.D.; Loeb, M. Low serum 25-hydroxyvitamin D level and risk of upper respiratory tract infection in children and adolescents. Clin. Infect. Dis. 2013, 57, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cayir, A.; Turan, M.I.; Ozkan, O.; Cayir, Y.; Kaya, A.; Davutoglu, S.; Ozkan, B. Serum vitamin D levels in children with recurrent otitis media. Eur. Arch. Otorhinolaryngol. 2014, 271, 689–693. [Google Scholar] [CrossRef] [PubMed]
Golan-Tripto, I.; Loewenthal, N.; Tal, A.; Dizitzer, Y.; Baumfeld, Y.; Goldbart, A. Vitamin D deficiency in children with acute bronchiolitis: A prospective cross-sectional case-control study. BMC Pediatr. 2021, 21, 211. [Google Scholar] [CrossRef] [PubMed]
Najada, A.S.; Habashneh, M.S.; Khader, M. The frequency of nutritional rickets among hospitalized infants and its relation to respiratory diseases. J. Trop. Pediatr. 2004, 50, 364–368. [Google Scholar] [CrossRef] [PubMed]
Banajeh, S.M. Nutritional rickets and vitamin D deficiency--association with the outcomes of childhood very severe pneumonia: A prospective cohort study. Pediatr. Pulmonol. 2009, 44, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
Fernandes, A.S.; Lobo, S.; Sandes, A.R.; Simão, C.; Lobo, L.; Bandeira, T. Vitamin D-dependent rickets: A resurgence of the rachitic lung in the 21st century. BMJ Case Rep. 2015, 2015, bcr2015212639. [Google Scholar] [CrossRef] [Green Version]
Deng, Q.F.; Chu, H.; Wen, Z.; Cao, Y.S. Vitamin D and urinary tract infection: A systematic review and meta-analysis. Ann. Clin. Lab. Sci. 2019, 49, 134–142. [Google Scholar]
Li, H.B.; Tai, X.H.; Sang, Y.H.; Jia, J.P.; Xu, Z.M.; Cui, X.F.; Dai, S. Association between vitamin D and development of otitis media: A PRISMA-compliant meta-analysis and systematic review. Medicine (Baltimore) 2016, 95, e4739. [Google Scholar] [CrossRef]
Thornton, K.A.; Marín, C.; Mora-Plazas, M.; Villamor, E. Vitamin D deficiency associated with increased incidence of gastrointestinal and ear infections in school-age children. Pediatr. Infect. Dis. J. 2013, 32, 585–593. [Google Scholar] [CrossRef]
Bucak, I.H.; Ozturk, A.B.; Almis, H.; Cevik, M.Ö.; Tekin, M.; Konca, Ç.; Turgut, M.; Bulbul, M. Is there a relationship between low vitamin D and rotaviral diarrhea? Pediatr. Int. 2016, 58, 270–273. [Google Scholar] [CrossRef]
Cusick, S.E.; Opoka, R.O.; Lund, T.C.; John, C.C.; Polgreen, L.E. Vitamin D insufficiency is common in Ugandan children and is associated with severe malaria. PLoS ONE 2014, 9, e113185. [Google Scholar] [CrossRef]
Diro, E.; Lynen, L.; Gebregziabiher, B.; Assefa, A.; Lakew, W.; Belew, Z.; Hailu, A.; Boelaert, M.; van Griensven, J. Clinical aspects of paediatric visceral leishmaniasis in North-west Ethiopia. Trop. Med. Int. Health 2015, 20, 8–16. [Google Scholar] [CrossRef]
Eltayeb, A.A.; Abdou, M.A.; Abdel-aal, A.M.; Othman, M.H. Vitamin D status and viral response to therapy in hepatitis C infected children. World J. Gastroenterol. 2015, 21, 1284–1291. [Google Scholar] [CrossRef]
Xiao, D.; Zhang, X.; Ying, J.; Zhou, Y.; Li, X.; Mu, D.; Qu, Y. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin. Nutr. 2020, 39, 1735–1741. [Google Scholar] [CrossRef]
He, M.; Cao, T.; Wang, J.; Wang, C.; Wang, Z.; Abdelrahim, M.E.A. Vitamin D deficiency relation to sepsis, paediatric risk of mortality III score, need for ventilation support, length of hospital stay, and duration of mechanical ventilation in critically ill children: A meta-analysis. Int. J. Clin. Pract. 2021, 75, e13908. [Google Scholar] [CrossRef]
Yu, L.; Ke, H.J.; Che, D.; Luo, S.L.; Guo, Y.; Wu, J.L. Effect of pandemic-related confinement on vitamin D status among children aged 0–6 years in Guangzhou, China: A cross-sectional study. Risk Manag. Healthc. Policy 2020, 13, 2669–2675. [Google Scholar] [CrossRef]
Zeng, J.; Wu, G.; Yang, W.; Gu, X.; Liang, W.; Yao, Y.; Song, Y. A serum vitamin D level <25 nmol/L pose high tuberculosis risk: A meta-analysis. PLoS ONE 2015, 10, e0126014. [Google Scholar] [CrossRef] [Green Version]
Keflie, T.S.; Nölle, N.; Lambert, C.; Nohr, D.; Biesalski, H.K. Vitamin D deficiencies among tuberculosis patients in Africa: A systematic review. Nutrition 2015, 31, 1204–1212. [Google Scholar] [CrossRef]
Xia, J.; Shi, L.; Zhao, L.; Xu, F. Impact of vitamin D supplementation on the outcome of tuberculosis treatment: A systematic review and meta-analysis of randomized controlled trials. Chin. Med. J. (Engl.) 2014, 127, 3127–3134. [Google Scholar] [PubMed]
Aibana, O.; Huang, C.C.; Aboud, S.; Arnedo-Pena, A.; Becerra, M.C.; Bellido-Blasco, J.B.; Bhosale, R.; Calderon, R.; Chiang, S.; Contreras, C.; et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 2019, 16, e1002907. [Google Scholar] [CrossRef] [PubMed]
Li, X.; Yu, Q.; Qin, F.; Zhang, B.; Lu, Y. Serum vitamin D level and the risk of urinary tract infection in children: A systematic review and meta-analysis. Front. Public Health 2021, 9, 637529. [Google Scholar] [CrossRef] [PubMed]
Yu, W.; Ying, Q.; Zhu, W.; Huang, L.; Hou, Q. Vitamin D status was associated with sepsis in critically ill children: A PRISMA compliant systematic review and meta-analysis. Medicine (Baltimore) 2021, 100, e23827. [Google Scholar] [CrossRef] [PubMed]
Cariolou, M.; Cupp, M.A.; Evangelou, E.; Tzoulaki, I.; Berlanga-Taylor, A.J. Importance of vitamin D in acute and critically ill children with subgroup analyses of sepsis and respiratory tract infections: A systematic review and meta-analysis. BMJ Open 2019, 9, e027666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Yakoob, M.Y.; Salam, R.A.; Khan, F.R.; Bhutta, Z.A. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst. Rev. 2016, 11, CD008824. [Google Scholar] [CrossRef] [Green Version]
Jat, K.R. Vitamin D deficiency and lower respiratory tract infections in children: A systematic review and meta-analysis of observational studies. Trop. Doct. 2017, 47, 77–84. [Google Scholar] [CrossRef]
Zhou, Y.F.; Luo, B.A.; Qin, L.L. The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine (Baltimore) 2019, 98, e17252. [Google Scholar] [CrossRef]
Charan, J.; Goyal, J.P.; Saxena, D.; Yadav, P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J. Pharmacol. Pharmacother. 2012, 3, 300–303. [Google Scholar] [CrossRef] [Green Version]
Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2013, 8, e65835. [Google Scholar] [CrossRef] [Green Version]
Mao, S.; Huang, S. Vitamin D supplementation and risk of respiratory tract infections: A meta-analysis of randomized controlled trials. Scand. J. Infect. Dis. 2013, 45, 696–702. [Google Scholar] [CrossRef]
Xiao, L.; Xing, C.; Yang, Z.; Xu, S.; Wang, M.; Du, H.; Liu, K.; Huang, Z. Vitamin D supplementation for the prevention of childhood acute respiratory infections: A systematic review of randomised controlled trials. Br. J. Nutr. 2015, 114, 1026–1034. [Google Scholar] [CrossRef]
Vuichard Gysin, D.; Dao, D.; Gysin, C.M.; Lytvyn, L.; Loeb, M. Effect of vitamin D3 supplementation on respiratory tract infections in healthy individuals: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2016, 11, e0162996. [Google Scholar] [CrossRef] [Green Version]
Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
Vlieg-Boerstra, B.; de Jong, N.; Meyer, R.; Agostoni, C.; De Cosmi, V.; Grimshaw, K.; Milani, G.P.; Muraro, A.; Oude Elberink, H.; Pali-Schöll, I.; et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy 2021. [Google Scholar] [CrossRef]
Jolliffe, D.A.; Camargo, C.A., Jr.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
Das, R.R.; Singh, M.; Naik, S.S. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst. Rev. 2018, 7, CD011597. [Google Scholar] [CrossRef]
Yang, C.; Lu, Y.; Wan, M.; Xu, D.; Yang, X.; Yang, L.; Wang, S.; Sun, G. Efficacy of high-dose vitamin D supplementation as an adjuvant treatment on pneumonia: Systematic review and a meta-analysis of randomized controlled studies. Nutr. Clin. Pract. 2021, 36, 368–384. [Google Scholar] [CrossRef]
Maretzke, F.; Bechthold, A.; Egert, S.; Ernst, J.B.; Melo van Lent, D.; Pilz, S.; Reichrath, J.; Stangl, G.I.; Stehle, P.; Volkert, D.; et al. Role of vitamin D in preventing and treating selected extraskeletal diseases-an Umbrella review. Nutrients 2020, 12, 969. [Google Scholar] [CrossRef] [Green Version]
Esposito, S.; Jones, M.H.; Feleszko, W.; Martell, J.A.O.; Falup-Pecurariu, O.; Geppe, N.; Martinón-Torres, F.; Shen, K.L.; Roth, M.; Principi, N. Prevention of new respiratory episodes in children with recurrent respiratory infections: An expert consensus statement. Microorganisms 2020, 8, 1810. [Google Scholar] [CrossRef]
Chiappini, E.; Santamaria, F.; Marseglia, G.L.; Marchisio, P.; Galli, L.; Cutrera, R.; de Martino, M.; Antonini, S.; Becherucci, P.; Biasci, P.; et al. Prevention of recurrent respiratory infections: Inter-society consensus. Ital. J. Pediatr. 2021, 47, 211. [Google Scholar] [CrossRef] [PubMed]
Ganmaa, D.; Enkhmaa, D.; Nasantogtokh, E.; Sukhbaatar, S.; Tumur-Ochir, K.E.; Manson, J.E. Vitamin D, respiratory infections, and chronic disease: Review of meta-analyses and randomized clinical trials. J. Intern. Med. 2022, 291, 141–164. [Google Scholar] [CrossRef] [PubMed]
Mohan, M.; Cherian, J.J.; Sharma, A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog. 2020, 16, e1008874. [Google Scholar] [CrossRef] [PubMed]
Mandal, A.K.J.; Baktash, V.; Hosack, T.; Van den Abbeele, K.; Missouris, C.G. Vitamin D status may indeed be a prognosticator for morbidity and mortality in patients with COVID-19. J. Med. Virol. 2021, 93, 1225. [Google Scholar] [CrossRef] [PubMed]
DeLuccia, R.; Clegg, D.; Sukumar, D. The implications of vitamin D deficiency on COVID-19 for at-risk populations. Nutr. Rev. 2021, 79, 227–234. [Google Scholar] [CrossRef] [PubMed]
Rustecka, A.; Maret, J.; Drab, A.; Leszczyńska, M.; Tomaszewska, A.; Lipińska-Opałka, A.; Będzichowska, A.; Kalicki, B.; Kubiak, J.Z. The impact of COVID-19 pandemic during 2020–2021 on the vitamin D serum levels in the paediatric population in Warsaw, Poland. Nutrients 2021, 13, 1990. [Google Scholar] [CrossRef] [PubMed]
Li, X.; Vanderloo, L.M.; Maguire, J.L.; Keown-Stoneman, C.D.G.; Aglipay, M.; Anderson, L.N.; Cost, K.T.; Charach, A.; Vanderhout, S.M.; Birken, C.S.; et al. Public health preventive measures and child health behaviours during COVID-19: A cohort study. Can. J. Public Health 2021, 112, 831–842. [Google Scholar] [CrossRef]
Kang, H.M.; Jeong, D.C.; Suh, B.K.; Ahn, M.B. The impact of the coronavirus disease-2019 pandemic on childhood obesity and vitamin D status. J. Korean Med. Sci. 2021, 36, e21. [Google Scholar] [CrossRef]
Alpcan, A.; Tursun, S.; Kandur, Y. Vitamin D levels in children with COVID-19: A report from Turkey. Epidemiol. Infect. 2021, 149, e180. [Google Scholar] [CrossRef]
Karakaya Molla, G.; Ünal Uzun, Ö.; Koç, N.; Özen Yeşil, B.; Bayhan, G.İ. Evaluation of nutritional status in pediatric patients diagnosed with COVID-19 infection. Clin. Nutr. ESPEN 2021, 44, 424–428. [Google Scholar] [CrossRef]
Bayramoğlu, E.; Akkoç, G.; Ağbaş, A.; Akgün, Ö.; Yurdakul, K.; Selçuk Duru, H.N.; Elevli, M. The association between vitamin D levels and the clinical severity and inflammation markers in pediatric COVID-19 patients: Single-center experience from a pandemic hospital. Eur. J. Pediatr. 2021, 180, 2699–2705. [Google Scholar] [CrossRef]
Feketea, G.; Vlacha, V.; Bocsan, I.C.; Vassilopoulou, E.; Stanciu, L.A.; Zdrenghea, M. Vitamin D in corona virus disease 2019 (COVID-19) related multisystem inflammatory syndrome in children (MIS-C). Front. Immunol. 2021, 12, 648546. [Google Scholar] [CrossRef]
Darren, A.; Osman, M.; Masilamani, K.; Habib Ali, S.; Kanthimathinathan, H.K.; Chikermane, A.; Al-Abadi, E.; Welch, S.B.; Hackett, S.; Scholefield, B.R.; et al. Vitamin D status of children with paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (PIMS-TS). Br. J. Nutr. 2021, 1–26. [Google Scholar] [CrossRef]
Shah, K.; Varna, V.P.; Pandya, A.; Saxena, D. Low vitamin D levels and prognosis in a COVID-19 pediatric population: A systematic review. QJM 2021, 114, 447–453. [Google Scholar] [CrossRef]
Demers-Mathieu, V.; Lavangnananda, S.; Medo, E. Influence of vitamin D3 levels and T cell-related cytokines in human milk on coronavirus disease 2019 infection in lactating women. Breastfeed. Med. 2021, 16, 995–1003. [Google Scholar] [CrossRef]
National Institute for Health and Care Excellence. COVID-19 Rapid Guideline: Vitamin D. 2020. Available online: www.nice.org.uk/guidance/ng187 (accessed on 5 February 2022).
Vierucci, F.; Del Pistoia, M.; Randazzo, E.; Massart, F.; Federico, G. The spectrum of vitamin D deficiency: Description of a family. Exp. Clin. Endocrinol. Diabetes 2017, 125, 478–484. [Google Scholar] [CrossRef]