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Abstract

Objectives: Recent literature suggested that higher vitamin D concentrations in

childhood are associated with a lower prevalence of molar incisor hypomineraliza-

tion (MIH). As tooth development already starts in utero, we aimed to study

whether vitamin D status during foetal, postnatal and childhood periods is associ-

ated with the presence of hypomineralized second primary molars (HSPMs) and/or

MIH at the age of six.

Methods: Our study was embedded in the Generation R Study, a population-based,

prospective cohort from foetal life onwards in Rotterdam, the Netherlands. HSPMs

and MIH were scored from intraoral photographs of the children at their age of six.

Serum 25(OH)D concentrations were measured at three points in time, which resulted

in three different samples; mid-gestational in mothers’ blood (n = 4750), in umbilical

cord blood (n = 3406) and in children’s blood at the age of 6 years (n = 3983).

Results: The children had a mean (�SD) age of 6.2 (�0.5) years at the moment of

taking the intraoral photographs. After adjustment for confounders, no association

was found between foetal 25(OH)D concentrations and the presence of HSPMs

(OR 1.02 per 10 nmol/L higher 25(OH)D, 95% CI: 0.98-1.07) or MIH (OR 1.05 per

10 nmol/L increase, 95% CI: 0.98-1.12) in 6-year-olds. A higher 25(OH)D concentra-

tion in umbilical cord blood resulted in neither lower odds of having HSPM (OR

1.05, 95% CI: 0.98-1.13) nor lower odds of having MIH (OR 0.95, 95% CI: 0.84-

1.07) by the age of six. Finally, we did not find higher 25(OH)D concentrations at

the age of six to be associated with a significant change in the odds of having

HSPM (OR 0.97, 95% CI: 0.92-1.02) or MIH (OR 1.07, 95% CI: 0.98-1.16).

Conclusions: 25(OH)D concentrations in prenatal, early postnatal and later postnatal

life are not associated with the presence of HPSMs or with MIH at the age of six.

Future observational research is required to replicate our findings. Furthermore, it is

encouraged to focus on identifying other modifiable risk factors, because prevention

of hypomineralization is possible only if the causes are known.
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1 | INTRODUCTION

Dental enamel hypomineralization is an anomaly of dental enamel in

which the affected enamel contains less mineral than sound enamel

and is more susceptible to caries.1-3 This anomaly can be divided

into hypomineralization of second primary molars, called hypominer-

alized second primary molars (HSPMs), and hypomineralization of

permanent first molars, called molar incisor hypomineralization

(MIH).3-5 In patients with MIH incisors of the upper jaw can also be

involved and in rare cases incisors of the lower jaw.3 Although

hypomineralization is not restricted to those few index teeth and

can be diagnosed in any tooth of both dentitions, a patient can only

be diagnosed with HSPM/MIH if he or she has at least one affected

second primary molar or first permanent molar, respectively.6 The

prevalence of HSPMs is about 4.9% in 6-year-old Dutch children.7

For MIH, the prevalence ranges between 8% and 19% among Dutch

and Scandinavian children aged six to thirteen years.3,5,7,8 Children

with HSPM have a higher chance of developing MIH.9,10 Identifying

modifiable risk factors is important to prevent development of dental

enamel hypomineralization in children.

Several early life risk factors for HSPM and MIH have been identi-

fied. For HSPM, maternal alcohol consumption during pregnancy, low

birth weight and fever during the first year of life are mentioned.11

Other illnesses in early life and the use of antibiotics were proposed

as risk factors for MIH.12,13 The exact aetiology of dental enamel

hypomineralization, however, remains unclear.4,11-14 In the search to

unravel the aetiology of dental hypomineralization, a recent study of

K€uhnisch et al15 showed that higher serum 25-hydroxyvitamin D (25

(OH)D) concentrations were correlated with less MIH and dental car-

ies in 1048 German children at age ten. To our knowledge, this is the

only study to have examined 25(OH)D and dental enamel hypominer-

alization. Several other studies examined vitamin D in relation to caries

and generally observed that vitamin D supplementation in early life

may be preventative for dental caries, as reviewed by Hujoel et al16

The main function of vitamin D is to maintain plasma calcium

concentrations at a constant level, which is important for healthy

bone development and increasing evidence suggests also for healthy

tooth development.17,18 Vitamin D stimulates mineralization of den-

tal enamel and bone by binding to receptors that are expressed in

both dental cells and bone cells.19,20 Because vitamin D is important

in the mineralization of these tissues, it is noteworthy that we

recently discovered that lower bone mass is associated with the

presence of HSPM but not with MIH in 6-year-old children.21 Our

hypothesis is that this association could be explained by differences

in 25(OH)D status between children, affecting mineralization of den-

tal enamel and bone.

A limitation of the previous study of K€uhnisch et al15 was that

information on vitamin D status of the children was only available at

10 years of age, whereas tooth development and enamel mineraliza-

tion already start earlier in life.12,22 Accordingly, we aimed to repli-

cate and extend these previous analyses by examining whether 25

(OH)D concentrations during foetal life, early postnatal life and child-

hood are associated with HSPMs and/or MIH in 6-year-old children.

Based on the previous literature, our hypothesis was that children,

affected by HSPM or MIH, have significant lower 25(OH)D concen-

trations during earlier phases in their life than children with unaf-

fected teeth.

2 | METHODS

2.1 | Study design and population

The analysis was embedded in the Generation R Study, a popula-

tion-based, prospective cohort from foetal life onwards in Rotter-

dam, the Netherlands.23 Pregnant women living in the study area

with a due date between April 2002 and January 2006 were eligible

for enrolment. We enrolled 9778 mothers, who gave birth to a total

of 9745 live-born children. The study has been approved by the

Medical Ethics Committee of Erasmus Medical Center, Rotterdam

(MEC 198.782/2001/31). Written informed consent was obtained

from parents of all participants. Concentrations of 25(OH)D were

measured at three points in time; at mid-gestation (18-25 weeks of

pregnancy) in 7179 mothers, after birth from a blood sample of the

umbilical cord in 5023 children and at 6 years of age (mean 6.2

[range 4.9-9.1]) in 4167 children. Intraoral photographs were made

of 6325 children during the same visit at the age of six. The number

of children with data on both 25(OH)D and intraoral photographs

ranged from 3406 to 4750 for the different analyses (Figure 1).

2.2 | HSPM and MIH diagnoses

To visualize HSPM and MIH, an intraoral camera was used (Poscam

USB intraoral [Digital Leader PointNix] or Sopro 717 [Acteon] auto-

focus camera, 640 9 480 pixels). The minimal scene illumination of

both cameras was 3.0 lx (F1.4). During the data collection period,

pictures of the teeth were taken by six trained nurses, twelve den-

tal students and six PhD students. A paediatric dentist (ME) gave

them a presentation about the how and why of taking the dental

photographs and repeated that each half a year. Before the

employees/students were allowed to make photographs themselves,

they had to accompany an experienced employee/student for a

day and learned how to make high-quality photographs. Afterwards,
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a paediatric dentist (ME) evaluated all photographs within 2 or

4 weeks. If she found the quality to be too low, she further

instructed the respective employee/student on how to improve

their quality or she trained them individually. Before taking the

photographs, the children had to brush their teeth and excess sal-

iva was removed with a cotton roll. Photographs were scored by a

paediatric dentist (ME) on the presence of HSPM and MIH using

the European Academy of Pediatric Dentistry (EAPD)criteria.24

After completion of the data collection period, the same paediatric

dentist (ME) re-evaluated the photographs of 649 children (10%)

with a minimal time gap of 6 weeks. This resulted in a kappa for

the intraobserver agreement of 0.82 for HSPM and 0.85 for

MIH.21 A second paediatric dentist (JV) re-evaluated the pho-

tographs of 648 children (10%). The kappa’s for the interobserver

agreement for ME and JV were 0.60 for HSPM and 0.69 for

MIH.10,21 JV evaluated the photographs only once. Hence, we were

not able to calculate a kappa value for the intraobserver agreement

of this examiner. ME and JV had a calibration session each 2 or

3 months. Before this session, ME randomly chose a couple pho-

tographs and discussed them together with JV. As photographs

were taken at the age of six, not all children had their permanent

first molars yet, resulting in a smaller number of children with data

on MIH than HSPM. Children without data on MIH were on aver-

age younger (mean age 6.00 vs 6.41 years), were more often male

(52.7% vs 44.7%) and more often had a Dutch or other Western

background (68.3% vs 59.8%) than children with data on MIH

(Table S1).

2.3 | 25(OH)D measurement

Maternal venous blood samples were collected during mid-preg-

nancy at a median gestational age of 20.4 weeks (95% range 18.5-

23.4). After delivery, midwives or obstetricians collected cord blood

from the umbilical vein at a median gestational age of 40.1 weeks

(95% range 36.7-42.3). Blood samples of the children were collected

at the research centre at the 6-year visit. Concentrations of 25(OH)

D in these samples were analysed in two different laboratories.

25(OH)D concentrations in maternal blood samples and in umbili-

cal cord blood were measured at the Eyles Laboratory of the

Queensland Brain Institute, University of Queensland, Australia.

Samples were quantified using isotope dilution liquid chromatogra-

phy/tandem mass spectrometry (LC-MS/MS). The method limit of

quantification was 6 nmol/L and interassay imprecision was <11%.25

Vitamin D status of children’s blood samples was measured at

the Endocrine Laboratory of the VU University Medical Center, Ams-

terdam, the Netherlands as described in detail previously.26 Briefly,

25(OH)D was measured using isotope dilution online solid phase

extraction LC-MS/MS, a similar method as used for the foetal sam-

ple. The limit of quantitation was 4.0 nmol/L; intra-assay coefficient

of variation was <6%, and interassay coefficient of variation was

<8% for concentrations between 25 and 180 nmol/L.26 This method

was perfectly aligned with the reference methods.27

A cross-validation in 31 umbilical cord and pregnancy blood sam-

ples that were analysed in both laboratories showed an excellent

correlation between both methods (r = .99). The Passing & Bablok

F IGURE 1 Flow chart of participants
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regression analysis resulted in 25(OH)DEyles = 0.93* 25(OH)

DVUmc + 0.3 nmol/L. This means that a small calibration difference

of about 7% exists between the two LC-MS/MS methods. As both

assays show some interassay variation, we decided not to correct

for this small difference.

We categorized 25(OH)D concentrations: ≥75 nmol/L (optimal),

50 to <75 nmol/L (sufficient), 25 to <50 nmol/L (deficient) and

<25 nmol/L (severely deficient) on the basis of recommendations

and cut-offs used in previous studies.26,28

Measuring the 25(OH)D concentrations at three different time

points and assessing hypomineralization at one time point resulted in

four different subsets of the population; three subsets with a 25

(OH)D measurement at one point in time and dental data; and one

subset with measurements at all three points in time and dental

data. These subsets were highly comparable in terms of population

characteristics (Table S2).

2.4 | Covariates

Maternal age, educational level (low, mid-low, mid-high or high), par-

ity, folic acid supplement use before/during pregnancy (start 1st

10 weeks, start periconceptional or never) and household income

(<2000, 2000-3300, >3300 Euros/month) were assessed at enrol-

ment in the study (ie, during pregnancy) using questionnaires. Mater-

nal smoking and alcohol consumption during pregnancy were

assessed in each trimester of pregnancy and categorized into never,

until pregnancy was known, or continued. Information on child’s

birth weight was acquired from medical records and hospital reg-

istries. Low birth weight was defined as a birth weight below 2500

grams. Children’s ethnicity was defined based on birth country of

both parents29 and categorized into Western (Dutch, other Euro-

pean, American and Oceanian), Moroccan and Turkish, African (Suri-

namese-Creole, Antillean, Cape Verdean and other African), or Asian

(Indonesian, other Asian and Surinamese-Hindustani) on the basis of

expected similarities in skin colour.26 Frequency of fever in the first

year of life was assessed at age 12 months with questionnaires. Dur-

ing the research centre visit at the child’s age of 6 years, we mea-

sured length and weight of the child. At the 6-year follow-up, we

assessed duration of television watching (<2/≥2 h/d) and playing

outside during daytime (<2/≥2 h/d) with questionnaires. At the 6-

year follow-up, we re-assessed household income (<2000, 2000-

3200 or >3200 Euros/month) and maternal educational level.30 For

all blood sample analyses, we kept a record of the month and season

of the year in which blood was drawn.

2.5 | Statistical analyses

First, we constructed three binary logistic regression models in which

having HSPMs at the age of six (yes/no) was defined as the outcome

(dependent variable) and the foetal serum 25(OH)D concentrations

were included as a predictor (independent variable). Foetal serum 25

(OH)D concentrations were included as both a categorical variable

and as a continuous variable per 10 nmol/L. The categories were

compared to an optimal serum concentration of ≥75 nmol/L (refer-

ence category). Model 1 adjusted only for the child’s sex, gestational

age at blood withdrawal, mother’s age and BMI before pregnancy.

Model 2 additionally adjusted for variables that were associated with

HSPMs in the Generation R Study population.11 In model 3, we

added variables that were associated with serum 25(OH)D concen-

trations in our study population.26 We followed the same approach

for studying the association between MIH (outcome) and foetal 25

(OH)D serum concentrations (predictor). Moreover, we made use of

the same models to study the association between HSPM and MIH

as outcomes and cord blood serum 25(OH)D concentrations as pre-

dictor. For the approach in which the child’s serum 25(OH)D con-

centrations at the age of six was used as a predictor, minor

modifications in the model were made as follows: Model 1 was

adjusted for child’s sex, age, weight and length, model 2 did not

change, and model 3 was adjusted for household income and mater-

nal educational level at the child’s age of six instead of at enrolment,

and child’s watching television and playing outside were added

because these factors have been shown to be important for chil-

dren’s vitamin D status.27

To be able to compare results of foetal, birth and childhood 25

(OH)D, we repeated the analyses in a subgroup with data available

on 25(OH)D at all three time points (n = 1840, Figure 1). We tested

for statistical interaction between vitamin D status and children’s

age, sex and ethnicity separately in model 3. Multicollinearity was

evaluated but was found not to be a problem in our models, because

the tolerance statistic exceeded 0.20 for all variables. Moreover, we

examined whether we could assume 25(OH)D levels to be linear to

the logit using natural cubic splines (degrees of freedom = 3). Miss-

ing data of covariates were handled by applying multiple imputation

(n = 10 imputations).31 The pooled odds ratios (ORs) and 95% confi-

dence intervals (95% CIs) were derived from pooling the results of

the ten imputed datasets. Effect estimates were similar to the results

of analyses of the original data, therefore, we only report pooled

results after the imputation procedure. SPSS version 22.0 for Mac

(IBM Corp, Armonk, NY, USA) was used for all analyses and a two-

sided P-value of <.05 was considered to be statistically significant.

The STROBE Guidelines were used to ensure adequate reporting

of this observational study.32

3 | RESULTS

Children in our sample had a mean (�SD) age of 6.2 (�0.5) years at

assessment (Table 1). Half of all participants had optimal or sufficient

25(OH)D serum concentrations above 50 nmol/L (50.1%) at the mid-

gestational period; 26.5% were deficient, and 23.4% were severely

deficient in 25(OH)D. About 10% of the children had incomplete

image sets or too low-quality photographs to score HSPMs. To score

MIH, 62.5% of the children had incomplete image sets (ie, no

erupted first permanent molars) or too low-quality photographs. The

prevalence of HSPM in this population was 8.9% (381 out of 4278),

and it was 8.1% (146 out of 1780) for MIH.
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The results of the logistic regression analyses with mid-gesta-

tional serum 25(OH)D concentration as a predictor and dental

enamel hypomineralization as the outcome are shown in Table 2. In

model 1, children from mothers with severely deficient mid-gesta-

tional 25(OH)D concentrations had significantly lower odds of having

HSPMs (OR, 0.67; 95% CI, 0.50-0.91) than those from mothers with

TABLE 1 Maternal and child characteristics in the total group of children with foetal 25(OH)D concentration measurementsa,b

Maternal characteristics Total group (n = 4750) Child characteristics Total group (n = 4750)

Age (y) 30.4 � 5.0 Age (y) 6.2 � 0.5

Length (cm) 168 � 7.4 Male (%) 49.7 (2359)

BMI (kg/cm2) 24.7 � 4.4 Birth weight (kg) 3.4 � 0.6

Parity (% (n)) Low birth weight (% (n)) 5.0 (236)

Nulliparous 57.4 (2727) Weight (kg) 23.2 � 4.2

Primi- or multiparous 42.6 (1991) Length (cm) 119 � 5.9

Missing 0.7 (32) Fever in first year of life (% (n))

Educational level (% (n)) Yes 82.0 (2573)

High 28.9 (1165) No 18.0 (566)

Mid-high 27.6 (1115) Missing 33.9 (1611)

Mid-low 31.4 (1268) Ethnicity (% (n))

Low 12.1 (488) Dutch and other Western 65.0 (3035)

Missing 15.0 (714) Moroccan and Turkish 14.0 (653)

Household Income/month (% (n)) African 14.8 (691)

>3200 euro 49.8 (1912) Asian 6.2 (288)

2000-3200 euro 26.1 (1000) Missing 1.8 (83)

<2000 euro 24.1 (925) Watching television (% (n))c

Missing 19.2 (913) <2 h/d 80.5 (2621)

Alcohol use during pregnancy (% (n)) ≥2 h/d 19.5 (636)

Never 45.1 (1887) Missing 21.8 (910)

Alcohol use until pregnancy was known 14.3 (598) Playing outside during daytime (% (n))c

Continued 40.6 (1697) ≥2 h/d 23.0 (704)

Missing 12.0 (568) <2 h/d 77.0 (2358)

Folic acid use during pregnancy (% (n)) Missing 26.5 (1105)

Start 1st 10 weeks 32.2 (1170) Season of blood withdrawal (% (n))

Start periconceptional 43.5 (1580) Winter 24.0 (1140)

Never 24.2 (879) Spring 28.3 (1343)

Missing 23.6 (1121) Summer 22.3 (1060)

Fall 25.4 (1207)

25(OH)D Concentration (% (n))

Optimal + Sufficient (≥50 nmol/L) 50.1 (2381)

Deficient (25-50 nmol/L) 26.5 (1258)

Severely deficient (<25 nmol/L) 23.4 (1111)

Evaluable photographs (% (n))

HSPM 90.0 (4278)

MIH 37.5 (1780)

Prevalence HSPM (% (n))d 8.9 (381)

Prevalence MIH (% (n))e 8.2 (146)

aValues are means � SDs for continuous variables and percentages for categorical variables based on the number of valid cases.
bFor the categorical variables, the percentage of missing data is shown.
cBased on group of children with childhood 25(OH)D concentration measurements (n = 4167).
dBased on group of children with evaluable photographs for HSPM (n = 4278).
eBased on group of children with evaluable photographs for MIH (n = 1780).
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sufficient or optimal 25(OH)D concentrations. Similar associations

were observed for 25(OH)D as a continuous variable. However, no

association with HSPMs remained statistically significant in models 2

and 3. The foetal 25(OH)D concentration was not associated with

the presence of MIH in children.

Children with severely deficient 25(OH)D concentrations in

umbilical cord blood serum had significantly lower odds of having

HSPMs than children with sufficient to optimal levels (Table 3; OR,

0.63; 95% CI, 0.45-0.88). Further adjustment for other confounders

in models 2 and 3, however, showed no associations. The level of

the cord blood serum 25(OH)D concentrations was not associated

with the presence of MIH in the 6-year-old children.

Table 4 shows the associations between 25(OH)D concentra-

tions, measured at the age of six, with HSPM and MIH. Model 1

showed that children with a deficient 25(OH)D status had signifi-

cantly lower odds for having HSPM (OR, 0.73; 95% CI, 0.55-0.98)

than those with optimal levels. After more extensive adjustment in

models 2 and 3, this association was no longer apparent. Results for

MIH were similar. In model 1, children with a deficient 25(OH)D sta-

tus had significantly lower odds of having MIH (OR 0.68, 95% CI,

0.53-0.88) than those with an optimal serum concentration. How-

ever, after further adjustment, all ORs were nonsignificant.

In sensitivity analyses, in which we restricted our analyses to a

subgroup of children with 25(OH)D data available at all three time

points, similar effect estimates were observed as those obtained in

the full populations (Table S3). We found no significant interaction

between 25(OH)D and child’s age, sex or ethnicity for the associa-

tion with HSPMs or MIH. No better fit of any model was found

after applying natural cubic splines (all P > .05), indicating linearity to

the logit.

4 | DISCUSSION

Our findings provide no evidence for an association between 25(OH)

D status during foetal life, at birth or at age six with the presence of

HSPMs or MIH in 6-year-olds. Despite a tendency towards lower

odds for both HSPMs and MIH in children with lower 25(OH)D con-

centrations in the basic models, all apparent associations disappeared

after adjusting for possible confounders. Furthermore, associations

did not differ by child age, sex or ethnicity.

To put the above findings in perspective, some limitations of our

study have to be addressed. Children who did not have their first

permanent molar yet could not be included, which resulted in smaller

sample sizes for MIH in all analyses compared with HSPM. This may

have introduced possible selection bias. Children with complete data

on MIH were older on average, more often female and more often

had a non-Dutch or other non-Western background. This may have

resulted in underestimation of the MIH-prevalence, but it is not

likely to have biased our results. Ideally, diagnoses of HPSM and

MIH were based on clinical examinations, but due to the study set-

ting we had to make use of digital intraoral photographs.33 This may

have led to an underestimation and/or nondifferential misclassifica-

tion of pathological findings, resulting in possible information bias.

We tried to minimalize the chance of having this bias using a reliable

method, but some bias may still be present.34 Furthermore, not all

children with 25(OH)D measurements had photographs of suffi-

ciently high quality for diagnosing HSPM and/or MIH due to blurri-

ness of the pictures (eg, movements) which have led to excluded

children. Sampling bias may therefore have occurred, reducing gener-

alizability to the population, but may not have biased our effect esti-

mates. It is expected that the association between 25(OH)D status

TABLE 2 Associations of mid-gestational serum 25(OH)D concentrations with HSPM and MIH

Mid-gestational Serum 25(OH)D concentrations

≥50 nmol/L (Sufficient
to Optimal)

25-50 nmol/L
(Deficient)

<25 nmol/L
(Severely Def.) Per 10 nmol/L

HSPM (n = 4278) (Yes vs No) n = 2184 (222 vs 2184) n = 1126 (96 vs 1030) n = 968 (63 vs 905) n = 4728 (381 vs 3897)

OR (95% CI)

Model 1a Reference 0.85 (0.66-1.10) 0.67 (0.50-0.91) 1.04 (1.01-1.08)

Model 2b Reference 0.93 (0.72-1.21) 0.87 (0.62-1.23) 1.01 (0.97-1.05)

Model 3c Reference 0.89 (0.68-1.16) 0.82 (0.57-1.18) 1.02 (0.98-1.07)

MIH (n = 1780) (Yes vs No) n = 650 (66 vs 709) n = 498 (38 vs 498) n = 507 (42 vs 465) n = 1780 (146 vs 1634)

OR (95% CI)

Model 1a Reference 0.87 (0.57-1.32) 0.92 (0.60-1.41) 1.04 (0.98-1.10)

Model 2b Reference 0.92 (0.60-1.42) 1.15 (0.71-1.87) 1.02 (0.96-1.08)

Model 3c Reference 0.85 (0.55-1.33) 0.99 (0.58-1.69) 1.05 (0.98-1.12)

HSPM, hypomineralized second primary molar; MIH, molar incisor hypomineralization.

Values are odds ratios (OR) with 95% confidence interval (CI).

Significant associations are bold.
aModel 1 = adjusted for child’s sex, gestational age (mid-gestational), age of mother, BMI before pregnancy.
bModel 2 = adjusted for all factors in model 1 and additionally adjusted for factors related to enamel hypomineralization (Alcohol use during pregnancy,

child’s ethnicity, low birth weight and fever in first year of life).
cModel 3 = adjusted for all factors in model 2 and additionally adjusted for factors related to 25(OH)D levels (Household income at intake, educational

level mother at intake, folic acid use during pregnancy, parity and season of blood draw).
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and dental enamel hypomineralization is the same for included and

excluded participants. Another limitation of our study is that we did

not consider different distribution patterns of HSPMs and MIH. This

limited the possibility to associate vitamin D status with numerical

data. Still, the number of children with HSPMs and MIH would have

been the same, as the diagnosis was based on the index teeth as

stated in the EAPD-criteria.24 Furthermore, to prevent possible attri-

tion bias, we implemented a multiple imputation method for missing

data of covariates. Sensitivity analyses of the imputed data, however,

did not result in significant differences in outcome compared to

TABLE 3 Associations of cord blood serum 25(OH)D concentrations with HSPM and MIH

Cord Blood Serum 25(OH)D concentrations

≥50 nmol/L (Sufficient
to Optimal)

25-50 nmol/L
(Deficient)

<25 nmol/L
(Severely Def.) Per 10 nmol/L

HSPM (n = 3092) (Yes vs No) n = 650 (72 vs 578) n = 1106 (109 vs 997) n = 1336 (88 vs 1248) n = 3092 (269 vs 2823)

OR (95% CI)

Model 1a Reference 0.90 (0.66-1.23) 0.63 (0.45-0.88) 1.09 (1.03-1.15)

Model 2b Reference 0.95 (0.69-1.31) 0.80 (0.56-1.14) 1.05 (0.99-1.12)

Model 3c Reference 0.94 (0.67-1.31) 0.79 (0.53-1.18) 1.05 (0.98-1.13)

MIH (n = 1315) (Yes vs No) n = 233 (21 vs 212) n = 438 (37 vs 401) n = 644 (57 vs 587) n = 1315 (115 vs 1200)

OR (95% CI)

Model 1a Reference 0.92 (0.53-1.62) 0.95 (0.55-1.65) 0.98 (0.89-1.08)

Model 2b Reference 0.97 (0.55-1.70) 1.11 (0.62-1.98) 0.94 (0.84-1.05)

Model 3c Reference 0.94 (0.52-1.70) 1.06 (0.55-2.02) 0.95 (0.84-1.07)

HSPM, hypomineralized second primary molar; MIH, molar incisor hypomineralization.

Values are odds ratios (OR) with 95% confidence interval (CI).

Significant associations are bold.
aModel 1 = adjusted for child’s sex, gestational age (mid-gestational), age of mother, BMI before pregnancy.
bModel 2 = adjusted for all factors in model 1 and additionally adjusted for factors related to enamel hypomineralization (Alcohol use during pregnancy,

child’s ethnicity, low birth weight and fever in first year of life).
cModel 3 = adjusted for all factors in model 2 and additionally adjusted for factors related to 25(OH)D levels (Household income at intake, educational

level mother at intake, folic acid use during pregnancy, parity and season of blood draw).

TABLE 4 Associations of childhood serum 25(OH)D concentrations with HSPM and MIH

Serum 25(OH)D concentrations

≥75 nmol/L (Optimal)
50-75 nmol/L
(Sufficient)

25-50 nmol/L
(Deficient)

<25 nmol/L
(Severely Def.) Per 10 nmol/L

HSPM (n = 3642)

(Yes vs No)

n = 1254 (124 vs 1130) n = 1327 (134 vs 1193) n = 843 (59 vs 784) n = 218 (12 vs 206) n = 3642 (329 vs 3313)

OR (95% CI)

Model 1a Reference 1.05 (0.92-1.20) 0.73 (0.54-1.00) 0.59 (0.32-1.09) 1.03 (0.99-1.07)

Model 2b Reference 1.12 (0.86-1.46) 0.88 (0.63-1.24) 0.84 (0.44-1.60) 1.00 (0.95-1.04)

Model 3c Reference 1.20 (0.91-1.57) 1.02 (0.70-1.48) 1.03 (0.52-2.04) 0.97 (0.92-1.02)

MIH (n = 1556)

(Yes vs No)

n = 459 (45 vs 414) n = 548 (42 vs 506) n = 431 (27 vs 404) n = 118 (9 vs 109) n = 1556 (123 vs 1433)

OR (95% CI)

Model 1a Reference 0.79 (0.63-0.99) 0.68 (0.53-0.88) 0.96 (0.65-1.43) 1.06 (1.03-1.10)

Model 2b Reference 0.81 (0.52-1.26) 0.75 (0.44-1.27) 1.14 (0.51-2.57) 1.05 (0.98-1.13)

Model 3c Reference 0.81 (0.51-1.29) 0.72 (0.40-1.31) 1.05 (0.42-2.61) 1.07 (0.98-1.16)

HSPM, hypomineralized second primary molar; MIH, molar incisor hypomineralization.

Values are odds ratios (OR) with 95% confidence interval (CI).

Significant associations are bold.
aModel 1 = adjusted for child’s sex, age, weight and length.
bModel 2 = additionally adjusted for factors related to enamel hypomineralization (Alcohol use during pregnancy, child’s ethnicity, low birth weight and

fever in first year of life).
cModel 3 = additionally adjusted for factors related to 25(OH)D levels (Household income, educational level mother, folic acid use during pregnancy,

parity, watching television, playing outside, season of blood draw).
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analyses of the original data. The major strength of our study was

that we were able to include not only 25(OH)D status when the

teeth were already developed, but we have also measured 25(OH)D

concentrations at two time points in time during tooth mineraliza-

tion, which is unique.22,35 Another strength of our study was the

large and diverse study population of children that could be included

and analysed. Furthermore, we were able to adjust for many impor-

tant factors related to 25(OH)D concentrations, which were not

always considered in previous studies.

We were the first to study the association between serum 25

(OH)D status and HSPM prevalence in children. Enamel of HSPMs is

thought to be less resistant to dental caries and recent studies con-

cluded high 25(OH)D concentrations in children, high prenatal mater-

nal 25(OH)D concentrations, and even higher vitamin D intake

during pregnancy, to be associated with lower risk of dental caries in

primary dentition.2,36-38 Given these results, we hypothesized that

25(OH)D deficiency during tooth development would result in

weaker enamel or even hypomineralized enamel. Moreover, the odds

of having HSPMs is higher in children with a lower bone mass,21

which is influenced by vitamin D.39 It was therefore unexpected to

observe no association between 25(OH)D and HSPM prevalence in

6-year-old children. In line with our findings for enamel hypomineral-

ization, however, we also recently observed no association of foetal

vitamin D status with children’s bone mass.28

K€uhnisch et al15 were the first to have studied the association

between a child’s serum 25(OH)D status and MIH. Contradictory to

their results, we did not find elevated serum 25(OH)D concentra-

tions in children to be negatively correlated with MIH. Compared to

their study, we included children that were on average 4 years

younger, but it is unlikely that this could explain the discrepancy in

results. Despite the inclusion of younger children, we had the same

number of MIH-cases as K€uhnisch et al15 Furthermore, they

reported the lack of earlier 25(OH)D concentration measurements

during the period of tooth development as a limiting factor of their

study,15 because the development of teeth already starts in utero.22

We were also able to examine 25(OH)D in a prenatal and early post-

natal period. This was a major strength of our study. However, nei-

ther the prenatal nor the postnatal 25(OH)D status showed a

significant association with HSPMs or MIH.

In conclusion, in this large population-based cohort, 25(OH)D con-

centrations in prenatal, early postnatal and later postnatal life are not

associated with HPSMs or with MIH at the age of six. To our knowl-

edge, we are the only research group, together with K€uhnisch et al15

to have studied the association between 25(OH)D status and dental

enamel hypomineralization with contradictory results. Therefore, we

encourage other cohorts to replicate our findings. Replication in obser-

vational studies is needed to confirm whether or not vitamin D supple-

mentation, as a preventive agent against enamel hypomineralization, is

worth to be investigated in clinical trials. This could be performed by

setting up a cohort or by embedding a study within an existing cohort

with repeated and early measurements of serum 25(OH)D in children.

Ideally, during the developmental period of teeth. Furthermore, it is

important to keep on searching for different preventive possibilities

and aetiological factors for dental hypomineralization in children, which

still are unknown.14 Moreover, despite null findings with hypomineral-

ization, it would be interesting to study the association between 25

(OH)D status and dental caries in our population. The pathway in which

vitamin D affects the risk of developing dental caries may involve path-

ways other than enamel mineralization.40
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