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Abbreviations  

AChRs; acetylcholine receptors 

DHA; docosahexaenoic acid 

EPA; eicosapentaenoic acid 

GH; growth hormone 

HMB; beta-hydroxy-beta-methylbutyrate 

IGF-1; insulin-like growth factor 1 

MFGM; milk fat globule membrane 

mTOR; mammalian/mechanistic target of rapamycin 

MU; motor unit 

NMJ; neuromuscular junction 

PUFA; polyunsaturated fatty acid 

ROS; reactive oxygen species 

VDR; vitamin D receptor 

WM; white matter  
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Abstract 

 

The purpose of this review is to discuss the structural and physiological changes that underlie 

age-related neuromuscular dysfunction and to summarize current evidence on the potential role 

of nutritional interventions on neuromuscular dysfunction-associated pathways.  Age-related 

neuromuscular deficits are known to coincide with distinct changes in the central and peripheral 

nervous system, in the neuromuscular system, and systemically.  Although many features 

contribute to the age-related decline in neuromuscular function, a comprehensive understanding 

of their integration and temporal relationship is needed.  Nonetheless, many nutrients and 

ingredients show promise in modulating neuromuscular output by counteracting the age-related 

changes that coincide with neuromuscular dysfunction.  In particular, dietary supplements, such 

as vitamin D, omega-3 fatty acids, beta-hydroxy-beta-methylbutyrate (HMB), creatine, and 

dietary phospholipids, demonstrate potential in ameliorating age-related neuromuscular 

dysfunction.  However, current evidence seldom directly assesses neuromuscular outcomes and 

is not always in the context of aging.  Additional clinical research studies are needed to confirm 

the benefits of dietary supplements on neuromuscular function, as well as to define the 

appropriate population, dosage, and duration for intervention. 

 

Keywords: dietary supplement; diet; motor function; sarcopenia; dynapenia; motor unit  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

4 
 

1. Introduction 

 

Normal, healthy aging in humans is accompanied by a decline in physical and neurocognitive 

abilities, which encompass a decrease in muscle function, motor performance, interdependent 

cognitive-motor control, and many aspects of executive function [1-3].  Although physical 

abilities tend to decline more rapidly and to a greater extent in aging, the neurocognitive decline 

is still common, yet difficult to manage.  Moreover, the underlying physiological causes of this 

neurocognitive decline accentuates, and may even initiate, the age-related decline in physical 

performance.  Consequently, this general decline can adversely affect functional activities of 

daily life that can lead to an increased risk of injury (e.g., accidental fall) and functional 

dependence.  In fact, the number of older adults requiring long-term care due to functional 

dependence is projected to quadruple by 2050 [4].  This concern affects men and women alike, 

as the timing and rate of age-related declines in muscle strength and neuromuscular function are 

similar in both genders [5]. 

 

Given that physical performance is determined by the output from the neuromuscular system, 

both neural and musculoskeletal properties are key contributors to the age-related decline in 

physical abilities.  The neuromuscular junction (NMJ) is thought to play a crucial role as it 

demonstrates distinct age-related deterioration involving both neural and muscular aspects.  

Furthermore, characteristics of this age-related degeneration at the NMJ have revealed potential 

underlying mechanisms to target with specific nutritional factors.   
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In regards to treatment strategies, emphasizing certain lifestyle factors, like physical activity and 

proper nutrition, play critical roles in normal healthy aging.  With increasing evidence of dietary 

influences on healthy functional living in aging [6], specific dietary nutrients have been shown to 

positively affect cognitive and musculoskeletal function in older adults [7, 8].  Consequently, the 

aim of this review is to examine the effects of dietary supplements that promote healthy 

neuromuscular aging by potentially counteracting age-related changes that contribute to 

neuromuscular dysfunction. 

 

This review summarizes the structural and physiological changes that not only affect the aging 

NMJ but also coincide with the age-related decline in neuromuscular function.  In particular, 

changes in the central and peripheral nervous system, the neuromuscular system, and the system 

as a whole with features related to neurodegeneration, musculoskeletal alterations, the decline in 

anabolic hormones, mitochondrial dysfunction, oxidative stress, and inflammation are discussed.  

Lastly, the review covers both nutrients and ingredients - such as vitamin D, omega-3 fatty acids, 

beta-hydroxy-beta-methylbutyrate (HMB), creatine, and dietary phospholipids - that can 

positively affect neuromuscular output and therefore may be beneficial in counteracting the age-

related changes contributing to neuromuscular dysfunction. 

 

The studies included in this review were identified by a literature search conducted in multiple 

databases (Embase, MEDLINE, and PubMed) using the following descriptors in associations: 

neuromuscular OR neuromuscular junction OR physical function, AND aging OR aged OR 

dysfunction, AND humans OR animal models, AND nutrition OR nutrients OR nutritional 

ingredients.  Review articles and meta-analyses, as well as those resulting from reverse search, 
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were selected.  Although several nutrients and ingredients appeared beneficial in preventing or 

attenuating the age-related decline in muscle and physical function, the focus of this examination 

was only on those that have specifically demonstrated the capability to influence the aging 

neuromuscular junction or its functional output.  Thus, studies were further identified by a 

PubMed database search using “neuromuscular” AND specific nutrients or dietary supplements 

previously identified.   

 

2. Age-related neuromuscular degeneration 

 

Although many features coincide with the age-related decline in neuromuscular function 

depicted in Fig. 1, a comprehensive understanding of their cause and integrative influence is 

lacking.  Age-related muscular atrophy occurs along with a decrease in muscular strength, 

power, and function.  However, muscle atrophy is not the only factor contributing to loss of 

strength and function, as a 5-year longitudinal study that recruited well-functioning men and 

women (n = 1678) in their 70’s has demonstrated that, in those who lost or remained at a 

constant weight, the age-related loss in muscle strength was 2-5 times faster than the observed 

loss of muscle, as measured by maximal isokinetic knee extension and mid-thigh cross sectional 

area, respectively [9].  In fact, those that gained weight still lost muscle strength - albeit less than 

those that lost weight - regardless of the small increases in muscle, suggesting a loss in muscle 

quality or activation.  Across all groups, an average decrease in strength of ~15% across the 5 

years was observed.  This loss in strength is similar to the findings of a smaller (n = 358) but 

lengthier prospective cohort study [5], in which generally healthy, independent living men and 

women recruited at 50, 60, and 70 years of age lost on average 22 to 31% of their grip strength 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

7 
 

across a 10-year period.  Interestingly, although grip strength decreased similarly across the age 

groups, balance and gait speed had the greatest deterioration after 60 and 70 years of age, 

respectively.  Altogether, these findings provide useful information for the optimal ages (i.e., by 

50, 60, and 70 years of age, respectively) to intervene with targeted lifestyle and exercise 

strategies focused on muscle strength, balance, and gait.  Lastly, aside from plausible muscle 

quality decrements with aging, increasing evidence exists that age-related neural deficits 

contribute to the loss of strength and functional performance via a decrease in information 

processing, force generation, movement speed, motor control, gait, balance, coordination, and 

response speed [10, 11].  

 

Given that both neurocognitive and musculoskeletal deficits play a role in the decline in physical 

abilities with age, a growing concern has contributed to a greater exploring of the NMJ’s 

integrity and its role in physical decline [12].  Considerable evidence of structural and functional 

changes at the NMJ are implicated in the age-related muscular performance deficits.  Although 

the integration and temporal relationship of these contributing factors are not fully understood, 

recent studies have suggested that the age-related neuromuscular dysfunction precedes, and may 

be a requisite to initiate, the loss of muscle mass and function [e.g., 13].  Here, factors 

contributing to NMJ dysfunction are discussed, beginning with a top-down approach followed by 

a more systemic consideration. 

 

2.1. Central and peripheral nervous system 
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In normal, healthy aging, there are many neuroanatomical and neurophysiological changes that 

are associated with cognitive deficits; however, their involvement in age-related performance 

deficits are less clear.  Interestingly, cognition, itself, is strongly associated with physical 

performance in older adults, such that those experiencing greater cognitive decline also suffer 

from more prominent gait deficits [14].  In this section, the numerous brain-related changes are 

not reviewed (see [15] for a detailed review), as many studies do not assess relationships 

between precise neuroanatomy and motor performance.  However, it is plausible that the 

neurobiology that influences brain atrophy in select regions, namely sensorimotor regions, 

contributes to age-related motor performance deficits.  Furthermore, maximal activation of 

muscle by the nervous system is certainly influenced by the excitability of cortical neurons and 

the synchronicity of firing spinal motor neurons [16]. 

 

A substantial distributed loss of white matter volume occurs throughout the brain in normal 

aging.  White matter (WM) is primarily composed of myelinated axons and, as its name 

suggests, appears white due to the lipid content of myelin.  WM loss is also accompanied by an 

age-related decline in WM integrity, which is associated with lower scores on muscular strength, 

fine motor coordination, processing speed, reaction time, gait, and balance [17].  Moreover, age-

related loss in WM is not only confined to the brain but extends to the peripheral nervous system.  

In the aging spinal cord, a reduced number and diameter of myelinated motor axons exist in the 

ventral roots, specifically with a greater loss of large-diameter axons [18], that presumably 

contribute to the reduced nerve conduction velocity seen in aging [19]. 
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2.2. Neuromuscular system 

 

Well-characterized age-related changes occur in the neuromuscular junction (NMJ), which 

consists of the pre-synaptic motor nerve terminal, the synaptic cleft (basal lamina), and the post-

synaptic motor endplate (i.e., the muscle membrane) (see Fig. 2).  When an action potential is 

generated and travels down to the pre-synaptic terminal, voltage-gated calcium channels open 

and the resulting calcium influx triggers translocation of acetylcholine-stored vesicles to the 

membrane of the axon terminal.  Acetylcholine (ACh) is delivered into the synaptic cleft and 

binds to post-synaptic nicotinic ACh receptors (AChRs) present on the motor endplate to 

propagate an action potential along the muscle fiber, which results in muscle contraction. The 

basic functional unit of the neuromuscular system, the motor unit (MU), is comprised of a single 

lower motor neuron and its innervating muscle fibers that contract simultaneously provided 

sufficient discharge from the neuron.  However, individual motor units are quite different in their 

contractile response characteristics of muscle fiber.  Muscle fibers are generally classified as 

either type I (slow-twitch) or type II (fast-twitch), with the latter displaying greater contractile 

speed, force generation, and susceptibility to fatigue, as well as less mitochondria and myoglobin 

content.  An individual MU innervates muscle fibers that only belong to a single fiber type, and 

muscle fibers require innervation for survival. 

 

Although the following subsections highlight the predominant age-related neuromuscular 

changes seen in humans, further neuromuscular changes that occur in animal models may 

translate to aging humans (see [20, 21]).  For example, a reduced capacity of successful motor 

neuron reinnervation to muscle (reviewed in [22]), a degradation of muscle contractile protein 
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machinery [23], and a loss of regenerative capacity and stem cell function [24] may also occur in 

humans with aging.  Altogether, these changes may lead to the age-related excitation-contraction 

uncoupling (reviewed in [12]).  Furthermore, rodent models of human aging have corroborated 

that neural changes precede, and may cause, the age-related myofiber atrophy [25, 26].  Recent 

insights on signaling pathways, like dysregulated autophagy, sympathetic activity, and agrin-

MuSK-Lrp4 and Wnt signaling, are involved in the aging neuromuscular junction, but these are 

not discussed (see [27]).   

 

2.2.1. Motor unit loss 

 

In aging, both neural and muscular changes can affect the MU, as it undergoes several age-

related structural and physiological changes that are involved in the concomitant decrease in 

motor performance.  Most fundamentally, the number of motor neurons in the spinal cord 

progressively decline in old age [28, 29], with one study showing instances of aged subjects 

demonstrating only half of the motor neuron counts found in middle-aged subjects [30].  This 

age-related motor neuron loss results in fewer MUs and supports the loss of spinal gray matter 

seen with aging [31, 32].  However, McNeil et al. [33] have shown that, despite a decrease in the 

number of MUs in older adults compared to young, maximal isometric strength in the tibialis 

anterior did not differ.  Conversely though, very old adults with a more pronounced decline in 

the number of MUs had weaker maximal isometric strength in the tibialis anterior compared to 

young adults.  These findings suggest that the progressive loss of motor neurons needs to reach a 

critical threshold before presenting functional impairments in maximal isometric strength of the 

tibialis anterior.  Presumptively, the preservation of this functional parameter early in adult life 
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may result from the maintenance of muscle fibers through collateral reinnervation by surviving 

motor neurons, which describes the MU remodeling that is observed with electromyography in 

aging (i.e., larger and less MUs) [34].  Furthermore, this MU remodeling in aging is implicated 

in not only strength deficits but also the decrease in peak muscle power [35]. 

 

2.2.2. Dysfunctional motor unit remodeling 

 

In another study investigating the maximal isometric strength of the index finger (i.e., abduction 

of the second digit), Kamen et al. [36] detected weaker force production in old compared to 

young adults and that the MU discharge rate in old adults was 64% of that in young adults.  The 

investigators proposed that reductions in maximal force capacity of older adults are partially a 

result from an impaired ability to fully drive the surviving MUs.  The more variable discharge 

from single MUs has also been suggested to reduce the ability of older subjects to perform steady 

muscle contractions [37].  Collectively, these studies demonstrate that, although no differences 

may occur in maximal strength of specific muscles when full compensatory MU remodeling 

exists, the resulting larger MUs have different physiological properties.  These different 

physiological properties may be in response to a motor neuron having to maintain more muscle 

fibers, which may consequently lead to the age-related impairments in fine motor control (i.e., 

reduced force steadiness and accuracy) [38, 39]. 

 

Remodeling of the MU in aging is also accompanied by a change in the motor innervation 

pattern at the endplate.  In particular, an age-related increase in the number of axonal branches 

entering the endplate has been reported [40].  Age-related increases in axonal arborization may 
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explain the observed intrusion of Schwann cell processes into the synaptic cleft [41].  Since 

Schwann cells produce the myelin sheath insulating axons, the processes may need to be as close 

as possible to previously denervated end plates to facilitate successful reinnervation via 

myelination of newly sprouted axonal branches.  Neural changes at the NMJ are also 

accompanied by changes at the muscular membrane.  Specifically, degeneration of junctional 

folds and an expansion of the postsynaptic area appear during aging, with the latter resulting 

from increasing length and branching of the motor endplate [41].  Along with this postsynaptic 

expansion in aging, an increase in the number of aggregated AChRs on the postsynaptic endplate 

follows [40].  Together, these age-related morphological and physiological changes of the NMJ 

may be involved in the general decrease in excitability of spinal reflexes seen in aging [42-44]. 

 

Motor neuron loss can also be accompanied by extensive muscle fiber loss when reinnervation 

reaches its capacity and, presumably, fat or fibrous tissue partially replace this muscle loss [45].  

Consequently, this motor neuron loss may explain the minor degree of muscle fiber type 

grouping in old age [41], the observed age-related increase in intermuscular fat [9], and the 

decrease in muscle size with age.  However, the decreasing size of aging muscle occurs because 

of not only muscle fiber loss but also muscle fiber atrophy, which appears to affect type II 

muscle fibers to a greater extent [46].  These type II fibers are essential for fast reactions to loss 

of balance and, thus, preventing falls. 

 

2.3. Features of neuromuscular dysfunction 
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2.3.1. Mitochondrial dysfunction 

 

Oxidative stress has been implicated in neuromuscular dysfunction [47] and is mediated by 

reactive oxygen and nitrogen species, like free radicals, which are largely a byproduct of 

mitochondrial oxidative phosphorylation.  In aging, production of these reactive species 

increases due to mitochondrial dysfunction [48] caused in part by age-related aberrations in 

mitochondrial DNA [49].  If these reactive species are not neutralized by endogenous or 

exogenous antioxidants, they can induce oxidative damage to cellular infrastructure and 

subsequently impair function (reviewed in [50]).  For example, aging rats display dramatic 

structural changes in mitochondria of distal motor axon terminals, but not of motor neurons 

within the ventral horn of the spinal cord [51].  The regional specificity of structural changes in 

mitochondria is particularly interesting given the presence of apoptotic markers and their 

colocalization with retrograde transport proteins in the soma indicating an early degenerative 

stage initiated distally at the NMJ.  Even though mitochondrial dysfunction is quite ubiquitous in 

the aging body, presumably some anatomical and cellular specificity contribute to its etiology.  

With the contribution of the age-related decline in adaptive responses that help to neutralize 

reactive species, an increase in oxidative-induced damage has been demonstrated in aging human 

muscle [52] and aging peripheral nerves of rodent models [53].    

 

2.3.2. Inflammation 

 

Aging is also accompanied by chronic, mild inflammation [54], which is marked by an elevated 

amount of circulating proinflammatory cytokines [55] and has been demonstrated to be a risk 
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factor for accelerated decline in muscle mass and strength [56].  Exactly how inflammation is 

involved in the decline in muscle function is unclear, but many potential pathways may mediate 

this relationship.  For example, many proinflammatory cytokines are known to negatively 

interact with the bioactivity and production of the anabolic hormone insulin-like growth factor 1 

(IGF-1) [57], which is consistent with the aging endocrine and paracrine decline of IGF-1 

discussed in the following subsection.   

 

Another example drawn from rodent studies is that Schwann cell senescence is correlated with 

inflammatory cytokine (interleukin 6) overexpression, which implicates inflammation in age-

related changes in myelination [58].  A recent study suggests that the detected inflammation in 

aging rats may perturb cholesterol homeostasis and contribute to impaired function of the spinal 

cord [59].  Given that cholesterol is a major constituent of cell membranes and myelin, WM 

integrity may be compromised due to this perturbation and would certainly exhibit functional 

consequences.  Furthermore, the observed changes mostly occurred by middle-age, which 

suggests that disrupted cholesterol homeostasis may be an early event in the age-related motor 

deficits.  Moreover, a recent study found that in aging rats the downregulation of cholesterol 

biosynthesis induces neuromuscular dysfunction by disrupting myelination [83].    

 

2.3.3. Endocrine factors 

 

Normal, healthy aging is accompanied by changes in circulating endocrine factors that are 

implicated in neuromuscular dysfunction [21].  Given that muscle atrophy partly contributes to 

the age-related functional deficits, the well-documented decline in circulating anabolic hormones 
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[60-62], like testosterone, growth hormone (GH), and IGF-1, is of particular interest.  

Accordingly, hormonal supplementation studies in aging have consistently shown increases in 

lean body mass while occasionally demonstrating only marginal improvements to muscular 

strength or function [63-65].  Although greater efficacy exists for combination therapies 

(reviewed in [66]), anabolic hormones may be favorably acting through mechanisms other than 

the obvious muscular growth.  For example, even though IGF-1 has compelling anabolic effects 

on muscle, it also has potent neurotrophic effects that promote dendritic arborization and 

synaptogenesis, as well as facilitate in the myelination of axons, prevention of motor neuron 

apoptosis, stimulation of axonal sprouting, and restoration of damaged axons (reviewed in [67]).  

Therefore, the age-related decline in IGF-1 may be contributing to the neural changes that occur 

with the aging motor unit. 

 

3. Targeted nutritional intervention 

 

The aim of this section is to evaluate nutritional interventions that show promise in preventing or 

attenuating the age-related decline in motor abilities by impacting the underlying mechanisms of 

neuromuscular dysfunction.  Deficient states of one or more nutrients certainly can confound 

findings in regards to dietary supplementation and, when possible, are mentioned.  Furthermore, 

a limitation is that many studies reviewed herein have been performed in conjunction with an 

exercise protocol, which makes it difficult to assess whether dietary supplementation would be 

beneficial when minimal physical activity also exists. 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

16 
 

Although several dietary supplements have shown benefits in preventing or attenuating the age-

related decline in muscle and physical function, the focus of this review is on nutritional 

supplements that specifically demonstrate the capability to influence the aging neuromuscular 

junction or its functional output.  Currently, limited aging human evidence has been reported 

with only some evidence corroborated through aging rodent studies.  Nonetheless, this section 

begins with some relevant essential nutrient considerations, since malnutrition is not uncommon 

in the elderly and dietary supplementation should be considered as an adjunct to usual dietary 

intake patterns. 

 

3.1. Essential nutrient considerations 

 

3.1.1. Protein 

 

In regards to macronutrient and micronutrient requirements, a clear distinction exists between 

minimal requirements and a more optimal level of intake.  For example, protein, a macronutrient 

of interest in regards to skeletal muscle health, has a recommended dietary allowance (RDA) of 

0.8g/kg body weight per day and, at this amount, is not adequate to maintain muscle in aging 

[68].  However, higher protein intake, even in the absence of exercise intervention, has been 

associated with smaller losses of lean mass in both middle-aged [69] and aged adults who lose 

weight and with greater gains of lean mass in aged adults who gain weight [70].  In fact, many 

experts recommend a protein intake of 1.2-2 g/kg bodyweight per day [71]. Additionally, the 

combined effects of a high protein diet and exercise are additive for improving lean body mass 

during weight loss [72].  The metabolic basis for these changes in lean mass are determined by 
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the net muscle protein balance (NBAL), which is the difference between muscle protein 

synthesis (MPS) and breakdown (MPB).  Although no difference exists in basal NBAL between 

young and old adults [73], the main cause for the negative NBAL in aged adults is due to 

anabolic resistance, which is indicated by the reduced MPS in response to anabolic stimuli, such 

as feeding [74], exercise [75], and insulin [76].  To a lesser extent, the age-related decline in 

insulin’s suppressive action on MPB is involved in the negative NBAL in aging as well [77].   

 

MPS is modulated by several dietary factors, with the essential amino acids (EAAs) from protein 

being the most efficient activator.  For that reason, ingestion of EAA in elderly individuals 

stimulates MPS to a greater extent than an isocaloric ingestion of whey protein [78].  Among the 

EAAs, branched-chain amino acids (BCAAs) appear to be the most responsible for directly 

stimulating MPS.  Leucine, one particular BCAA, has been acknowledged to be a potent 

stimulator of MPS by mechanisms that involve mammalian target of rapamycin (mTOR) 

signaling [79].  As a result, recent systematic reviews and meta-analyses suggest that leucine is 

effective in addressing sarcopenia, since it does indeed increase MPS and improve lean body 

mass [80, 81].  However, considering that an age-related deficit in the muscle anabolic response 

to nutritional stimuli exists, a higher proportion of leucine is required for optimal stimulation of 

MPS by EAAs in the elderly [82]. 

 

In regards to the impaired response to anabolic stimuli in aged muscle, it has been suggested that 

a defect in activating an mTOR signaling protein (S6K1) that targets a ribosomal component to 

stimulate MPS is likely responsible [76].  Another contribution is that insulin sensitivity is 

known to decrease with age.  Thus, higher protein diets may be favorable, since a hypocaloric 
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high-protein, as opposed to high-carbohydrate, diet can improve insulin sensitivity and spare lean 

body mass [83].  In fact, EAA supplementation in aged adults with sarcopenia has been shown to 

improve not only lean body mass [84] but also insulin sensitivity and IGF-1 serum 

concentrations, as well as decrease serum concentrations of tumor necrosis factor-alpha, a 

systemic inflammatory marker [85].  It should be mentioned that IGF-1 also activates mTOR 

signaling. 

 

3.1.2. Vitamin D 

 

A recent study found that exercise and supplementation with protein, EAAs, and vitamin D in 

sarcopenic elderly people increased fat-free mass, strength, IGF-1, well-being, and daily life 

function relative to not only controls but also exercise alone [86].  Therefore, in addition to the 

supplementation of protein in aging, the benefit of supplementing micronutrients, like vitamin D, 

may be crucial [87].  This is to some extent due to the high prevalence of vitamin D insufficiency 

in middle-aged and aged adults: nearly half are either at risk for deficiency or inadequacy based 

on serum 25-hydroxyvitamin D (25-OHD) levels of less than 30 nmol/L or 30-49 nmol/L, 

respectively [88].  Both vitamin D2 (ergocalciferol) and D3 (cholecalciferol) can be ingested from 

the diet and supplements, but D3 is also synthesized in the skin from cholesterol and its synthesis 

is dependent on sun exposure (i.e., by UVB radiation).  Both vitamin D2 and D3 are hydroxylated 

in the liver to two respective 25-OHD metabolites, which collectively are measured in serum to 

determine vitamin D status of an individual.  However, these metabolites are further 

hydroxylated by 1α-hydroxylase (1α-OHase) principally within the kidneys to form the 

biologically active hormonal forms of vitamin D, ercalcitriol (1,25-dihydroxyergocalciferol) and 
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calcitriol (1,25-dihydroxycholecalciferol), which are collectively referred to as 1,25-

dihydroxyvitamin D or 1,25(OH)2D. 

 

Vitamin D status based on serum 25-OHD concentrations in older adults is positively correlated 

with healthful muscular fat infiltration [89], improved functional performance, psychomotor 

function, and strength [90], as well as suppressed rates of decline in performance [91], which 

suggests a role of vitamin D in neuromuscular function [92].  In support of this, systematic 

reviews and meta-analyses have shown vitamin D supplementation, in deficient elderly men and 

women, enhances strength [93] and balance [94], as well as reduces insulin resistance [95] and 

the risk of falls [96].  Additionally, based on a more recent meta-analysis, the increase in muscle 

strength found with vitamin D supplementation in the elderly is most evident in the lower limbs 

(i.e. most commonly assessed my knee extension), which includes muscles generally more 

susceptible to sarcopenia (i.e., proximal leg muscles), and is not accompanied by an increase in 

muscle mass [97], suggesting an influence on the neuromuscular system. 

 

Vitamin D deficiency, which results in motor decline and myopathy that predominantly affects 

the number of type II fibers, can be ameliorated with dietary supplementation of vitamin D 

(reviewed in [98]).  Currently, the daily RDA for vitamin D is 600 International Units (IU) (15 

μg) for those 1-70 years of age and 800 IU (20 μg) for those older.  Although the beneficial 

effects of supplemental vitamin D in aging individuals that are already at a sufficient status 

remains inconclusive, some evidence exists that supplementation may still be beneficial in these 

individuals.  For example, a recent meta-analysis showed that daily dosages of ≥4000 IU vitamin 

D in healthy young adults significantly increased lower and upper limb muscle strength [99].  
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Whether this can extrapolate to aging individuals at already sufficient levels of vitamin D 

requires further corroboration.  However, a meta-analysis that focused on fall prevention in the 

elderly, determined that <700 IU of daily supplemental vitamin D or attained serum 25-OHD 

levels <60 nmol/L yielded no reduction in falls, whereas ≥700 IU or ≥60 nmol/L significantly 

reduced the risk of falling [100].  These findings are certainly influenced by baseline vitamin D 

levels prior to intervention, supplementation strategy, and supplemental form of vitamin D.  For 

instance, marginally greater prevention may be achieved with supplemental vitamin D3 in lieu of 

vitamin D2.  Thus, additional studies are needed to define proper timing and duration of 

intervention, doses, and risks of each individual vitamin D form.   

 

Though vitamin D appears to be the most promising and extensively studied micronutrient in the 

context of age-related neuromuscular dysfunction, little is known about its mechanism in tissues 

beyond the gut, kidney, and bone.  Vitamin D likely plays a beneficial role through both the 

direct activation of vitamin D receptor (VDR) and indirect action of regulating calcium and 

phosphate.  Interestingly, aging in humans is associated with decreased VDR expression in 

muscle, regardless of muscle location or serum 25-OHD levels [101].  From both animal and in 

vitro studies, we know that VDR activation regulates gene expression that is involved in muscle 

cell development, differentiation, and growth.  Moreover, a nonnuclear or membrane-associated 

VDR is presumably responsible for rapid, non-transcriptional signaling that mediates the actions 

of calcium influx and contraction, as well as involves pathways downstream of IGF-1 that 

regulate growth (reviewed in [102]).  IGF-1 signaling is further implicated as vitamin D activates 

a specific tyrosine kinase, Src [103], which can then activate the IGF-1 receptor [104].  Lastly, 

myoblasts and myotubes have been shown to have functionally active 1α-OHase [105], 
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indicating that muscle may be a target tissue for 25-OHD as it can be converted to biologically 

active vitamin D.  

 

Aside from the effects of vitamin D in muscle, some evidence of neurotrophic and anti-

inflammatory effects exists as well (reviewed in [106]).  First and foremost, vitamin D deficient 

diets in rodents have some deleterious effects on performance and, interestingly, result in 

alterations in the genomic and proteomic profile of muscle, specifically in NMJ-related genes 

and proteins [107].  Additionally, 25-OHD and 1,25(OH)2D have been detected in human 

cerebrospinal fluid [108], and the well-characterized and widespread distribution of VDR and 

1α-OHase in neurons and glial cells within the human brain suggests autocrine/paracrine 

properties of vitamin D in the brain [109].  On a similar note, an in vitro study has demonstrated 

that activated macrophage cells (microglia) in the brain can convert 25-OHD into 1,25(OH)2D 

[110], suggesting that the brain may react to inflammation by increasing 1,25(OH)2D 

concentrations.  In vitro studies have also revealed that 1,25(OH)2D can regulate the expression 

of several neurotrophic factors [111], stimulate VDR expression in oligodendrocytes [112], 

trigger anti-inflammatory responses in human brain pericytes [113], and inhibit proinflammatory 

cytokine production in microglia [114].  Furthermore, vitamin D has been shown in rats to 

enhance cholinergic activity [115], induce nerve growth factor production [116, 117], improve 

nerve recovery and myelination after injury [118], and protect against neural aging [119].  A 

recent systematic review by Minshull et al. [120] indicated that vitamin D may expedite 

neuromuscular remodeling and repair in animal models of injury, specifically with a 24 to 140% 

enhancement of recovery compared to controls.  However, this same systematic review, 

acknowledged that the effects in humans are inconclusive and actually do no show an effect of 
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vitamin D supplementation on neuromuscular strength adaptations following exercise.  Still, 

meta-analysis of the data was limited due to considerable heterogeneity of methodology and 

outcomes across studies, which echoes the need for further research.  Overall, although not 

directly tied to the aging NMJ, the cumulative clinical and preclinical evidence points to a 

benefit of vitamin D on the neuromuscular system. 

 

3.1.3. Omega-3 PUFA 

 

The only essential omega-3 fatty acid alpha-linolenic acid, which is commonly found in plant 

oils, can be converted into eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).  The 

latter two omega-3 PUFA are known to be associated with many healthy effects and are found in 

fish, phytoplankton, marine algae, and animal products (e.g. egg yolks).  In fact, fish oil 

supplements are generally taken for these beneficial health effects and as an inexpensive source 

of the polyunsaturated fatty acids (PUFA). 

 

In regards to its beneficial effects on the neuromuscular system, just 21 days of supplementation 

with 5 ml of seal oil (0.38 EPA and 0.51 g DHA) daily in young athletic adults has been shown 

to improve peripheral neuromuscular function, energy, and overall performance [121].  These 

beneficial effects appear to extrapolate to the aging population, too.  For instance, higher plasma 

PUFA levels in older adults are associated with greater muscle size and strength [122], whereas 

lower levels are predictive of a greater age-related decline in peripheral nerve function [123].  

Furthermore, twice a day ingestion of omega-3 PUFA (totaling 1.86 g EPA and 1.50 g DHA a 

day) for six months in older adults increased strength and thigh muscle volume, but only 
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marginally improved power output, even in the absence of a structured exercise program [124].  

Likewise, in the presence of a training program, the improvement in both neuromuscular 

capacity and functional performance observed in old aged individuals was greater in the 

supplemental groups, i.e., with fish oil at each meal providing a total of ~0.4 g EPA and 0.3 g 

DHA per day for at least 90 days [125].  In contrast, in another study, 12 weeks of 1.3 g of 

PUFA supplementation twice a day, totaling 0.66 g EPA and 0.44 g DHA per day, did not affect 

the evaluated parameters on body composition, strength, and physical performance in older 

adults [126].  The reason for this discrepancy is not known, but it could be due to population 

differences (baseline PUFA levels, genetic differences) or differences in study design.  

Additional studies are needed to assess whether individuals with diets adequate in PUFA still 

confer benefits from supplementation. 

 

The beneficial effects of omega-3 PUFA supplementation to neuromuscular function in aging is 

corroborated by a considerable amount of evidence at the molecular level.  Dietary fish oil 

supplementation has been shown to regulate the muscle transcriptome in older adults.  In 

particular, pathways involved in mitochondrial function and extracellular matrix organization 

were increased, whereas pathways involved in proteolysis and inhibition of the main anabolic 

regulator, mTOR, were decreased [127].  The impact on mitochondrial function can lead to a 

decrease in reactive species production and thus indirectly impact NMJ health (as described in 

section 3.10).  These beneficial effects of dietary omega-3 PUFA on muscle composition, 

quality, and protein metabolism in older adults are further reviewed in Smith, 2016 [128].  
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3.2. Other nutritional ingredients 

 

3.2.1. Beta-hydroxy-beta-methylbutyrate  

 

A minor leucine metabolite, known as beta-hydroxy-beta-methylbutyrate (HMB), is an 

ingredient commonly used to maintain muscle in elderly populations.  A recent systematic 

review and meta-analysis has substantiated that HMB supplementation preserves muscle mass in 

older adults [129].  Aside from preserving muscle mass, HMB supplementation has been shown 

to improve strength and muscle quality without training in older adults [130], as well as increase 

both fat-free mass gain and percent body fat loss in old aged individuals engaged in a strength 

training program [131].  Furthermore, HMB can improve endurance performance (i.e., physical 

working capacity) in untrained men and women, as it appears to delay the onset of 

neuromuscular fatigue [132].  Although the optimal dosage of HMB for neuromuscular benefits 

remains inconclusive, most studies show beneficial effects with the use of 2 to 3 g/day. 

Additionally, oral doses of 6 g of HMB per day for 1 month have been shown to be well-

tolerated in humans with no side-effects, and doses up to 100 g/day have been used in animal 

models [129].  

 

While it is unclear whether these neuromuscular effects are mediated by peripheral neurotrophic 

effects, a growing literature is exploring the effects of HMB in the brain as it crosses the blood-

brain barrier in rats [133].  For example, HMB is known to promote neurite outgrowth in vitro 

[134], and long-term supplementation in aging rats preserves the dendritic tree of pyramidal 

neurons in the medial prefrontal cortex [135], which may account for the beneficial cognitive 
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effects observed in aging [136, 137].  The beneficial effects of HMB have been proposed to be 

mediated through inhibiting proteolysis and upregulating the GH/IGF-1 axis, mTOR signaling, 

and presumably cholesterol biosynthesis (reviewed in [138]).  mTOR signaling is known to 

regulate autophagy, which is a dysregulated pathway recently implicated in age-related NMJ 

dysfunction [27].  Overall, HMB appears to be promising for the aging neuromuscular system; 

however, further research is needed to confirm these findings and understand the exact 

mechanism of action on the neuromuscular system  

 

3.2.2. Creatine 

 

Creatine is a non-essential nutrient naturally synthesized in the human body from glycine, 

arginine, and methionine that helps to supply cellular energy.  By being taken up and stored as 

phosphocreatine in tissues, the high-energy phosphate group can be used to resynthesize ATP 

from ADP.  Considering the high-energy needs of muscle and nervous tissue, creatine plays a 

vital role, especially in aging when there is mitochondrial dysfunction.  Creatine is also found in 

meat and additively contributes to circulating creatine and its storage.  Furthermore, creatine 

supplementation, generally in the form of creatine monohydrate, appears to be beneficial for 

cognition [139] and muscle performance [140].  Lastly, the optimal dosage of creatine appears to 

be 3 to 5 g/day.  At this dosage, creatine is well-tolerated, whereas at higher single doses of 10 g 

or more are occasionally associated with mild gastrointestinal discomfort (reviewed in [141]). 

 

In regards to its effects on the neuromuscular system, creatine supplementation has been shown 

in young healthy individuals to improve functional parameters assessed by electromyography 
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[142].  This beneficial effect of creatine on neuromuscular function is also seen in the elderly, as 

it has been shown to improve physical work capacity by delaying neuromuscular fatigue [143].  

Although limited studies exist on neuromuscular function per se, a recent meta-analysis supports 

a beneficial role for creatine supplementation during resistance training in aging individuals by 

improving muscle mass gain, strength, and functional performance over resistance training alone 

[144].  Moreover, a review of the current literature suggests that creatine supplementation, even 

without resistance training, in the elderly can potentially delay muscle atrophy and improve 

muscular endurance, muscular strength, and bone strength [145].  Furthermore, a natural 

precursor to creatine, guanidinoacetic acid, is currently being investigated as a performance-

enhancing supplement; however, much of this research is preliminary and whether its beneficial 

effects can be applied in the context of aging has yet to be determined (reviewed in [146]).   

 

3.2.3. Dietary phospholipids  

 

Dietary milk fat globule membrane (MFGM), composed of macronutrients as well as a 

substantial amount of phospholipids (e.g., phosphatidylcholine, phosphatidylserine, 

sphingomyelin), may be beneficial for the neuromuscular system in aging adults.  Given that the 

dietary phospholipids found in MFGM support myelination in the developing nervous system of 

rodents [147] and upregulate factors that aid in NMJ formation and myotrophy, it is unsurprising 

that MFMG supplementation with exercise in mice has been shown to improve age-related 

deficits in muscle function [148]. 
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Likewise in middle-aged adults, 1g of MFGM supplemented daily for 4 weeks combined with 

exercise significantly improved strength and neuromuscular output relative to those in the 

exercise alone group [149], whereas 10 weeks of supplementation further benefited 

neuromuscular output, physical performance, and muscle size [150].  A recent study has shown 

that at the same dosage for 16 weeks in the elderly, MFGM with exercise could improve frailty 

status; however, MFGM alone had minimal effects on frailty status [151].  These differences 

could be related to baseline population differences (sarcopenia/frailty status) since it is known 

that sarcopenia severity may impact response to nutritional intervention [152].  Nonetheless, 

MFGM appears promising and further evaluation is warranted in populations with 

neuromuscular dysfunction.  Lastly, no side-effects from dietary supplementation with MFGM 

have been reported, but an optimal dose remains unknown. 

 

4. Future Research 

 

More research is needed to elucidate the integration and temporal relationships of contributing 

factors to neuromuscular dysfunction in aging.  Additionally, investigating the underlying cause 

of the age-related neuromuscular dysfunction will help guide the development of targeted 

interventions for aging individuals and may even lead to insights on neuromuscular diseases.  In 

regards to dietary interventions, more research is certainly needed to elucidate the mechanisms 

by which dietary supplementation can impact the neuromuscular system, especially in the 

context of aging.  Furthermore, further research is essential to define the optimal initiation, 

dosage, and duration of dietary supplementation.  Indeed, other promising dietary supplements 
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especially those with strong antioxidant properties may be useful, if future studies can 

demonstrate a clinical benefit on neuromuscular health.   

 

5. Conclusions 

 

There are many aging features, especially within the neuromuscular system, that have been 

described as contributing factors to the age-related decline in physical function.  These include 

the structural, physiological, and functional diminution of neural and muscular tissue, as well as 

systemic changes, like mitochondrial dysfunction, augmented oxidative stress and inflammation, 

and diminished levels of anabolic hormones. 

 

In view of these well-characterized features of aging, the consequences of many lifestyle factors 

have been explored.  Although physical activity is important for healthy neuromuscular aging 

[153], less is known about the role of nutrition.  Aside from getting the required minimal intake 

of micronutrients and optimal intake of macronutrients (as defined for older adults), a potential 

role for specific nutrients or nutritional ingredients may exist by providing targeted benefit to the 

neuromuscular system.  To date, vitamin D, omega-3 PUFA, HMB, creatine, and MFGM 

provide the most substantial evidence in promoting healthy neuromuscular aging.  In particular, 

nutritional supplementation with these dietary supplements may be beneficial for promoting 

healthy neuromuscular aging as they target precise mechanisms that are affected: (1) vitamin D 

can promote myotrophic, neurotrophic, and anti-inflammatory effects, (2) omega-3 fatty acids 

can positively affect muscle transcriptome, specifically with pathways involved in mitochondrial 

function, muscle integrity, and anabolism, (3) HMB can be neurotrophic, anti-catabolic, and 
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indirectly anabolic, (4) creatine can improve cellular bioenergetics, (5) and MFGM may have 

both neurotrophic and myotrophic effects. 
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Figure Legends 

 

Figure 1.  A summary of the contributing factors to age-related neuromuscular dysfunction.  

Many systemic changes, like mitochondrial dysfunction, augmented oxidative stress and 

inflammation, and reduced levels of anabolic hormones, are implicated in the age-related 

degeneration of the neuromuscular system.  Altogether, these age-related changes result in 

neuromuscular dysfunction.  Key: ↑: increased; ↓: decreased; ROS: reactive oxygen species; 

AchRs: Acetylcholine receptors 

 

Figure 2.  A depiction of the neuromuscular system and junction.  Motor neurons from the spinal 

cord project to muscle appending at the neuromuscular junction, which consists of a pre-synaptic 

motor nerve terminal, the synaptic cleft, and the post-synaptic motor endplate (i.e., the muscle 

membrane).  The basic functional unit of the neuromuscular system, the motor unit, is comprised 

of a single motor neuron and its innervating muscle fibers that contract simultaneously provided 

sufficient discharge from the neuron.  Motor units can have different contractile response 

characteristics dependent on muscle fiber type innervation.  Type I (slow-twitch) muscle fibers 

display lower contractile speed, force generation, and susceptibility to fatigue, as well as greater 

mitochondria and myoglobin content. 
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