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ciated with the risk of psoriasis and atopic dermatitis, and 
several clinical/observational studies have suggested the 
beneficial effect of vitamin D in the therapy of these 2 in-
flammatory skin disorders.  Conclusions:  Vitamin D exerts a 
pleiotropic effect in the skin and could be an important ther-
apeutic option for psoriasis and atopic dermatitis. 

 © 2018 S. Karger AG, Basel 

 Introduction 

 The human skin acts as site of synthesis of vitamin D 
and also as target organ for the biologically active form of 
this vitamin. Vitamin D affects multiple functions in the 
skin ranging from keratinocyte proliferation, differentia-
tion, and apoptosis to barrier maintenance and immuno-
regulatory processes  [1] . Also, vitamin D is being consid-
ered as a therapeutic option for many skin pathologies 
 [2] . In this review, we will discuss the nonclassical func-
tion of vitamin D in the skin and will evaluate its role in 
certain inflammatory skin conditions using atopic der-
matitis (AD) and psoriasis as examples. 
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 Abstract 

  Background:  Vitamin D is a secosteroid, which was initially 
known for its skeletal role; however, in recent years, its func-
tions in different organs have been increasingly recognized. 
In this review, we will provide an overview of vitamin D func-
tions in the skin physiology with specific focus on its role in 
certain inflammatory skin conditions such as psoriasis and 
atopic dermatitis.  Methods:  A comprehensive literature 
search was carried out in PubMed and Google Scholar data-
bases using keywords like “vitamin D,” “skin,” “atopic der-
matitis,” and “psoriasis.” Only articles published in English 
and related to the study topic were included in this review. 
 Results:  Vitamin D is integrally connected to the skin for its 
synthesis, metabolism, and activity. It regulates many phys-
iological processes in the skin ranging from cellular prolif-
eration, differentiation, and apoptosis to barrier mainte-
nance and immune functions. Vitamin D deficiency is asso-
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  Main Structural and Functional Molecules in the Skin 

 The skin acts as first line of defense against infections. 
It consists of mainly 3 layers, the epidermis, dermis and 
hypodermis, and associated with it are several append-
ages like hair follicles, eccrine sweat glands, sebaceous 
glands, and apocrine glands. The epidermis consists of 
many cells like keratinocytes, melanocytes, Langerhans 
cells (a specialized subset of myeloid dendritic cells, DCs) 
and Merkel cells, among which keratinocytes account for 
95% of the total epidermal cells. There are 4 distinct epi-
dermal layers, each composed of keratinocytes at various 
differentiation stages  [1] :
  1. stratum basale: it consists of columnar, proliferating 

keratinocytes with an extensive network of keratins K5 
and K14;

  2. stratum spinosum: in this layer, keratinocytes initiate 
differentiation through synthesis of K1 and K10 kera-
tins, involucrin, and enzyme transglutaminase;

  3. granular layer: it is characterized by keratinocytes rich 
in electron-dense keratohyalin granules containing 
late differentiation markers like profilaggrin (precur-
sor of filaggrin), and loricrin; it also consists of lipid-
filled lamellar bodies that empty their contents into the 
intercellular spaces between the stratum granulare and 
stratum corneum and contribute to the permeability 
barrier;

  4. stratum corneum (SC): the uppermost layer, consists 
of terminally differentiated dead cells known as cor-
neocytes. The plasma membrane of corneocytes is re-
placed by an insoluble protein layer called “cornified 
envelope,” made of structural proteins like involucrin, 
loricrin, filaggrin, and small proline-rich protein 
cross-linked by transglutaminase. 
  Filaggrin is a particularly important molecule in the 

SC, as it facilitates the aggregation of keratin filaments of 
the cytoskeleton into bundles, consequently collapsing 
corneocytes into flattened disks. Also, it contributes to the 
hydration of the SC by proteolysing into pyrrolidine car-
boxylic acid and transurocanic acid in conditions of low 
water content  [3] . The constant thickness of the epidermis 
is maintained by the fine balance between basal cell pro-
liferation and corneocyte desquamation. The desquama-
tion process starts with the degradation of corneodesmo-
somes (modified desmosomes present in the SC) and is 
controlled by a number of proteases and their inhibitors. 
The human kallikrein (KLK)-related peptidases including 
the KLK5, KLK7, and KLK14 are the prominent proteases 
involved in desquamation. The lymphoepithelial Kazal-
type 5 serine protease inhibitor is an important protease 

inhibitor encoded by the  SPINK5  gene which has con-
firmed activity against the members of the KLK family  [4] . 

  Vitamin D: Synthesis and Functions 

 Vitamin D is a fat-soluble vitamin that occurs in 2 main 
forms: ergocalciferol (vitamin D 2 ) produced by plants and 
cholecalciferol (vitamin D 3 ) derived from animal-based 
foods. The major source of vitamin D in humans is the cu-
taneous synthesis in the presence of sunlight. The exposure 
of 7-dehydrocholesterol (7-DHC) to ultraviolet radiation 
B (UVB) of wavelength 290–315 nm results in the forma-
tion of previtamin D in the skin, which is thermally isom-
erized to the stabler vitamin D (cholecalciferol). The vita-
min D, whether synthesized in the skin or obtained from 
diet, undergoes 2 hydroxylation reactions: first in the liver 
by vitamin D 25-hydroxylase (CYP2R1) enzyme to form 
25-hydroxyvitamin D, 25(OH)D, also known as calcidiol 
and then in the kidney by 1α-hydroxylase (CYP27B1) 
to form an active metabolite, 1,25-dihydroxyvitamin D, 
1,25(OH) 2 D, also known as calcitriol. Both 25(OH)D and 
1,25(OH) 2 D may be metabolically inactivated through hy-
droxylation by 24-hydroxylase (CYP24A1)  [5] . The levels 
of vitamin D in serum are tightly regulated by a feedback 
mechanism of calcium, phosphorus, parathyroid hor-
mone, fibroblast growth factor and vitamin D itself  [6, 7] . 
The vitamin D status is evaluated by measuring the serum 
25(OH)D level, which is its major circulating form. Ac-
cording to the US Endocrine Society guidelines, vitamin 
D deficiency is defined as a serum level of 25(OH)D below 
20 ng/mL (50 nmol/L) and vitamin D insufficiency as a 
serum 25(OH)D level between 21 and 29 ng/mL (52.5–
72.5 nmol/L)  [8] .

  The function of vitamin D was for a long time consid-
ered to be the maintenance of a normal skeletal architec-
ture through calcium and phosphorus homeostasis, but 
in the last few decades, the extraskeletal effects of vitamin 
D became apparent, and its roles in the regulation of cell 
proliferation, differentiation, apoptosis, and in the im-
mune modulation are increasingly recognized  [9, 10] . 
These actions of vitamin D are mediated by the vitamin 
D receptor (VDR), which after activation interacts with 
retinoid X receptor (RXR) to form a heterodimeric com-
plex. The VDR-RXR complex is recruited to the vitamin 
D response elements (VDREs) in the promoter of target 
genes to regulate their expression. This process is de-
scribed as the genomic action of vitamin D, in contrast to 
the nongenomic action which is the direct effect that vi-
tamin D has on several signaling pathways. 
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  Role of Vitamin D in Skin Physiology 

 Vitamin D plays a vital role in the skin: the keratino-
cytes are not only a source of vitamin D, but also a re-
sponder to its active form  [1] . They are the only cells in 
the body that can synthesize vitamin D from its precursor 
7-DHC, and which are equipped with the entire enzy-
matic machinery (CYP27A1 and CYP27B1) necessary 
to metabolize vitamin D into its active metabolite 
1,25(OH) 2 D. Keratinocytes also express VDR, thus they 
respond in an autocrine and paracrine manner to the ac-
tive form of vitamin D. The entire pathway of vitamin D 3  
in human skin is shown in  Figure 1 . 

  Vitamin D and Epidermal Differentiation and 
Proliferation 
 Vitamin D affects the proliferation and differentiation 

of the skin either directly or through its interaction with 
calcium. Many in vitro studies have shown a dose-depen-
dent effect of vitamin D on keratinocyte proliferation and 
differentiation. At low concentration (10 –9   M  or less), 
1,25(OH) 2 D 3  was found to enhance keratinocyte prolif-

eration, while at high concentration (greater than 10 –8   M ), 
it inhibited the proliferation and promoted the differen-
tiation  [11, 12] . Several other factors like density of cells, 
calcium concentrations and presence or absence of serum 
influence the effect of vitamin D on in vitro keratinocyte 
proliferation  [13] . The antiproliferative action of vitamin 
D on keratinocytes is mediated by the decreased ex-
pression of c-myc and cyclin D and by the increased ex-
pression of the cell cycle inhibitors p21 cip  and p27 kip   [1, 
14] . 1,25(OH) 2 D promotes keratinocyte differentiation 
through an increased synthesis of structural components 
(involucrin, transglutaminase, loricrin, and filaggrin) of 
the cornified envelope  [14, 15] . The effect of vitamin D in 
the differentiation is also in part mediated by the (1) ele-
vation of intracellular calcium levels caused by calcium 
receptor stimulation, (2) increased phospholipase C-γ 1  
expression, and (3) enhanced formation of ceramides 
 [15–17] . Vitamin D may also directly regulate the kerati-
nocyte differentiation through interaction with VDR. 
This is evidenced by the fact that VDR knockout mice 
show reduced epidermal differentiation and exhibit low 
levels of involucrin, profilaggrin, and loricrin  [18] . The 

  Fig. 1.  Summary of vitamin D 3  pathway and functions in the hu-
man skin. Vitamin D 3  (Vit D 3 ) is synthesized in the skin from its 
precursor 7-DHC under the influence of UVB and metabolized to 
its active form, 1,25(OH) 2 D 3  through 2 subsequent hydroxylation 
reactions by CYP27A1 and CYP27B1 enzymes. It is rendered inac-
tive through the catabolic enzyme CYP24A1. 7-DHC, 7-dehydro-

cholesterol; 25(OH)D 3 , 25-hydroxyvitamin D 3 ; 1,25(OH) 2 D 3 , 
1,25-dihydroxyvitamin D 3 ; 24,25(OH) 2 D 3 , 24,25-dihydroxychole-
calciferol; 1,24,25(OH) 3 D 3 , 1,24,25-trihydroxycholecalciferol; 
CYP27A1, 25-hydroxylase; CYP27B1, 1α-hydroxylase; CYP24A1, 
24-hydroxylase; AMP, antimicrobial peptide; Ag, antigen; UVB, 
ultraviolet radiation B. 
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process of vitamin D-mediated epidermal differentiation 
through VDR is sequential and requires selective binding 
of VDR to 2 major coactivators: vitamin D receptor-in-
teracting protein (DRIP) and steroid receptor coactivator 
(SRC). It was observed that DRIP205 is predominantly 
expressed in proliferating keratinocytes and, as the cells 
differentiate, the expression of DRIP205 goes down, while 
the expression of SRC3 increases  [19] . It was demonstrat-
ed that calcium also regulates the expression of these 2 
coactivators and interacts with VDR for the differentia-
tion of keratinocytes  [20] . 

  Vitamin D and Barrier Function 
 Another aspect of keratinocyte proliferation and dif-

ferentiation is the maintenance of a proper epidermal 
barrier. Previous studies have shown that topical applica-
tion of calcitriol (1,25[OH] 2 D) restores the permeability 
barrier which was disrupted by application of corticoste-
roid or sodium lauryl sulfate  [21, 22] . Vitamin D mediates 
its effect on the epidermal barrier by enhanced synthesis 
of structural proteins of the cornified envelope. Addition-
ally, 1,25(OH) 2 D regulates the processing of the long-
chain glycosylceramides essential for lipid barrier forma-
tion. Oda et al.  [23]  have shown that VDR knockout mice 
display a defective permeability barrier due to the re-
duced production of glucosylceramide and its decreased 
transport into the lamellar bodies, resulting in a lower 
lipid content in these bodies. 

  Vitamin D and Keratinocyte Apoptosis 
 The effect of vitamin D on the keratinocyte apoptosis 

is dose dependent, similar to its effect on cellular prolif-
eration. At physiological concentrations, vitamin D pre-
vents apoptosis triggered by various proapoptotic stimu-
li like ceramide, UV radiation, TNF-α, etc., while at high 
concentrations it induces apoptosis in keratinocytes  [24] . 
The antiapoptotic or cytoprotective effect of vitamin D is 
shown to be mediated by sphinosine-1-phosphate. Other 
mechanisms are also reported to be responsible for the 
antiapoptotic effect of vitamin D like the activation of 
MEK/ERK and PI3K/Akt signaling pathways, and the in-
creased ratio of antiapoptotic protein (Bcl-2) to proapop-
totic protein (Bad and Bax)  [25] .

  Vitamin D and Skin Immune Functions 
 The skin innate immune system comprises physical 

barrier structures like SC, immune cells (like neutrophils, 
monocytes, macrophages, DCs, natural killer [NK] cells, 
etc.) and antimicrobial peptides (AMPs). The cutaneous 
synthesis of AMPs is the primary protection mechanism 

of the skin against environmental insults or microbial in-
vasion. Many resident cells of the skin (like keratinocytes, 
sebocytes, eccrine gland cells, and mast cells) and circu-
lating cells recruited to the skin (like neutrophils and NK 
cells) contribute to the synthesis of AMPs in the skin  [26, 
27] . More than 20 proteins with antimicrobial function 
are recognized in the skin; however, β-defensin and cat-
helicidins are the 2 main groups of skin AMPs  [26] . De-
fensins are classified in 3 subfamilies based on cysteine-
disulfide pairing between β-sheet structure – α, β, and 
θ – of which only β-defensin is appreciably expressed in 
the skin. Humans have a single cathelicidin gene which 
encodes the inactive peptide hCAP18, which after cleav-
age generates the mature peptide LL-37. Cathelicidin and 
β-defensin mediate antimicrobial activity either directly 
by disrupting the bacterial cell membrane and viral enve-
lope or indirectly by affecting various signaling pathways 
in the cells to initiate a host response. These 2 AMPs are 
also reported to promote keratinocyte proliferation and 
migration through EGFR signaling and STAT activation 
(necessary for skin wound healing), to stimulate cytokine 
or chemokine release through stimulation of G protein-
coupled receptors and to induce IL-8 secretion through 
the ERK p38/MAPK pathway in mast cells and keratino-
cytes  [28] . 

  The level of AMPs is low in intact skin, and it increas-
es following barrier disruption or infection. One of the 
possible ways it is done is through enhanced CYP27B1 
expression, subsequent to skin insult, which increases the 
local synthesis of active vitamin D. Schauber et al.  [29]  
have shown that following skin injury, TLR-2 is increased 
which in turn increases the level of cathelicidin through 
a vitamin D-dependent mechanism. Similarly, many 
studies have shown an increased expression of hCAP18/
LL-37 and defensin after 1,25(OH) 2 D 3  treatment in ke-
ratinocytes and sebocytes  [30–33] . Cathelicidin and β-
defensin are direct transcriptional targets of vitamin D, 
with cathelicidin being induced by binding of the 
1,25(OH) 2 D-VDR complex to the VDRE in the promoter 
region of the gene; however, β-defensin requires nuclear 
factor κB along with the 1,25(OH) 2 D-VDR complex for 
its transcription  [34] . Vitamin D is also reported to regu-
late the AMP synthesis by mechanisms other than the di-
rect transcriptional activation. The activity of cathelicidin 
and other AMPs in human skin is controlled through an 
enzymatic processing by serine proteases KLK5 and 
KLK7  [35] . Morizane et al.  [36]  showed that 1,25(OH) 2 D 3  
could affect the production of AMPs in the skin by regu-
lating synthesis and protease activity of KLK5 and KLK7. 
In another study, Dai et al.  [33]  showed that the induc-
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tion of cathelicidin and β-defensin HBD-3 expression by 
1,25(OH) 2 D 3  is regulated by peroxisome proliferator-ac-
tivated receptor-γ through AP-1 and p38 activity. 

  Besides regulating AMP synthesis in the skin, 
1,25(OH) 2 D 3  and calcipotriol (an analog of vitamin D) 
mediate an immunosuppressive action in the skin through 
decreased antigen presentation either directly by affect-
ing Langerhans cells or indirectly by modulating cytokine 
production by keratinocytes  [37, 38] . Recently, many 
studies suggested that calcipotriol mediates tolerance or 
immunosuppression in the skin through induction of 
CD4+CD25+ T regulatory (T reg ) cells which prevents 
subsequent antigen-specific CD8+ T-cell proliferation 
and IFN-γ production  [39, 40] . Skin-homing cutaneous 
lymphocyte-associated antigen (CLA+) memory T cells 
preferentially home to cutaneous sites for host defense 
against pathogens. CCR10 is a chemokine receptor that is 
preferentially expressed by skin-homing CLA+ T cells 
which facilitate their entry into cutaneous sites by inter-
acting with skin-associated CLC27 antigen. Studies in-
vestigating the effect of vitamin D on homing of memory 
T cells to the skin are contradictory. While some studies 
suggested that 1,25(OH) 2 D 3  and its analogs prevent skin 
T-cell infiltration by downregulating the expression of 
CLA  [41, 42] , other studies showed that 1,25(OH) 2 D 3  in-
duces CCR10 receptor expression on T cells promoting 
their homing to cutaneous sites  [43–45] . Recently, a study 
has shown that seasonal variation in vitamin D level af-
fects the skin-homing receptor expression with increased 
levels of CLA during the summer  [46] .

  Role of Vitamin D in Certain Inflammatory Skin 

Diseases 

 Psoriasis 
 Psoriasis is a chronic multifactorial inflammatory dis-

ease where the immune dysregulation plays a major role 
by involving a crosstalk between the innate and adaptive 
immune system. There is an increased infiltration of in-
nate immune system effectors like plasmacytoid dendrit-
ic cells (pDCs), myeloid dendritic cells (CD11c+ mDCs), 
neutrophils and NK cells, and abnormally high levels of 
AMPs (like β-defensins, S100 proteins or LL-37) in pso-
riatic lesions. It is suggested that a complex of host DNA 
and LL-37 acts as potent trigger for IFN-α production by 
pDCs and provides a mechanism of initiation of intoler-
ance to self-DNA  [47] . IFN-α derived from pDCs is sup-
posed to drive the early inflammatory cascade in psoriasis 
by activating “quiescent” autoimmune T cells into patho-

genic effectors through promoting activation or matura-
tion of mDCs  [48] . On activation, a subset of CD11c+ 
mDCs, known as TIP-DCs, expresses an increased level 
of TNF-α and inducible nitric oxide synthase enzyme 
(generates nitric oxide to induce vasodilation and inflam-
mation)  [49] . Additionally, another subset of mDCs pro-
duces IL-20 to enhance keratinocyte activation and pro-
liferation, and IL-23 and IL-12 to activate a specific subset 
of T cells  [50] . Neutrophils and NK cells recruited in pso-
riatic lesions further add to the inflammatory milieu of 
psoriasis through secretion of AMPs and proinflamma-
tory cytokines  [51, 52] . 

  Psoriatic lesions are also characterized by an increased 
infiltration and activation of T cells particularly CD4+ T 
helper 1 (Th1) and CD8+ cytotoxic T cells, which pre-
dominantly secrete type 1 cytokines like TNF-α and 
IFN-γ. These lesions are also enriched in other types of T 
cells like IL-17-producing T cells and NK T cells. It was 
observed that IL-23 secreted by mDCs and other leuko-
cytes induces the differentiation of naïve T cells into type 
17 helper T cells (Th17) and type 17 cytotoxic T cells, both 
secrete IL-17, IL-17F, and IL-22 cytokines  [53] . After ac-
tivation, NK T cells also secrete Th1, Th2, and Th17 cy-
tokines  [54] . These type 17 cytokines together with IFN-γ 
and TNF-α result in activation and proliferation of kera-
tinocytes. Thus, in response to cytokines secreted from 
DCs and T cells, keratinocytes become activated and pro-
duce AMPs, proinflammatory cytokines (IL-1, IL-6 and 
TNF-α), chemokines (CXCL8 through CXCL11 and 
CXCL20) and S100 proteins (S100A7–9)  [55] . These sol-
uble mediators act as chemoattractants for neutrophils 
and other immune cells. Therefore, a feedback loop exists 
between keratinocytes and infiltrating immune cells, 
which maintains a constant deregulated inflammatory 
process, characteristics of psoriatic disease. Unrestrained 
function of T cells in psoriasis may also be due to the dys-
function of T reg  cells. In fact, some studies have shown 
that T reg  cells isolated from psoriatic patients have a de-
creased suppressive function  [56, 57] , others demonstrat-
ed that they produce IFN-γ, TNF-α, and IL-17, suggesting 
a switch of their function from suppressive to prolifera-
tive  [58] . 

  Role of Vitamin D in Psoriasis 
 Vitamin D plays a critical role in psoriasis, and this is 

evidenced in many studies which reported either a defi-
ciency or insufficiency of serum vitamin D in psoriatic 
patients  [59–61] . Several case-control studies have shown 
significant lower levels of serum 25(OH)D in psoriatic 
patients compared to controls and reported an inverse 
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correlation between serum 25(OH)D and the severity of 
the disease  [62–66] . However, in a population-based 
screening, Wilson  [67]  showed that vitamin D deficiency 
is not common in psoriatic patients and that there is no 
significant difference in serum 25(OH)D levels in sub-
jects with or without psoriasis. The 25(OH)D level varies 
with several factors, including race, dietary intake, and 
UV light exposure, therefore results of studies on vitamin 
D need cautious interpretation.

  Vitamin D treatment may be effective in resolving pso-
riasis symptoms, and this is confirmed by many clinical 
studies. Finamor et al.  [68]  showed that psoriasis patients, 
who were receiving 35,000 IU of vitamin D 3  once daily for 
6 months, had significant improvement in psoriasis area 
severity index score (PASI) with a marked increase in 
their serum 25(OH)D level. Several clinical trials have 
also demonstrated an excellent efficacy and safety profile 
of vitamin D analogs like calcipotriol, tacalcitol, and 
maxacalcitol in the treatment of psoriasis  [69–71] . 

  NB-UVB (narrow-band ultraviolet B light) and UVA/
UVB phototherapy, widely used in the treatment of pso-
riasis, are thought to mediate its beneficial effect in part 
by elevating the serum 25(OH)D level  [72–74] . A clinical 
trial compared the efficacy and safety of various treat-
ment regimens for psoriasis (calcipotriol monotherapy, 
NB-UVB phototherapy alone and combination of calci-
potriol and NB-UVB) and demonstrated that the combi-
nation of calcipotriol and NB-UVB twice a week was su-
perior to other treatment regimens in rapidly reducing 
the PASI score of patients  [75] . The combination of vita-
min D or its analogs and corticosteroid is also reported to 
be more effective than either of their monotherapy be-
cause of their complementary actions. In combination 
treatment, vitamin D may counteract the steroid-induced 
skin atrophy by restoring the epidermal barrier, while 
corticosteroid may reduce the perilesional skin irritation 
caused by vitamin D analogs  [76–78] .

  Vitamin D exhibits an inhibitory effect in psoriasis 
through a multitude of ways. pDCs, which are supposed 
to initiate the inflammatory cascade in psoriasis, express 
transcriptionally active VDR and the vitamin D-metabo-
lizing enzymes CYP27B1 and CYP24A1. It was shown 
that vitamin D treatment impairs the capacity of pDCs to 
induce T-cell proliferation and IFN-γ secretion  [79] . Vi-
tamin D is also supposed to affect the Th17 pathway: it 
was observed that application of vitamin D and its ana-
logs on psoriatic lesions significantly decreased the infil-
tration of Th17 cells in the skin and inhibited their ex vivo 
expansion  [80, 81] . In other studies, vitamin D was re-
ported to suppress inflammatory cytokines like IL-12/23 

p40, IL-1α, IL-1β, and TNF-α, which were present in ab-
normally high levels in psoriatic skin  [82, 83] . Psoraisin 
(S100A7) and koebnerisin (S100A15), induced by Th17 
cytokines, synergistically act as chemoattractants and 
“alarmins” to amplify inflammation in psoriasis. Calci-
potriol was found to suppress Th17-induced psoriasin 
and koebnerisin in psoriatic skin  [84] . In an epidermal 
reconstructed model of psoriasis, Datta Mitra et al.  [85]  
showed that 1α,25-dihydroxyvitamin D 3 –3-bromoace-
tate, a vitamin D analog, has a more potent antiprolifera-
tive action compared to 1,25(OH) 2 D 3 . He showed that 
bromoacetate reverses the psoriasiform changes induced 
by IL-22 in the reconstructed epidermal model by inhib-
iting the expression of AKT1, MTOR, chemokines (IL-8 
and RANTES) and psoriasin (S100A7). 

  Vitamin D not only modulates or suppresses inflam-
mation in psoriasis; it also rectifies the abnormal epider-
mal function related to this condition. It was demonstrat-
ed that deletion in late cornified envelope genes, LCE3B 
and LCE3C, located within PSORS4 is a genetic risk fac-
tor of psoriasis. A study by Hoss et al.  [86]  has shown that 
1,25(OH) 2 D upregulated the LCE proteins (LC3A–E) in 
keratinocytes and provided a mechanism of ameliorating 
psoriasis in patients with LCE defects. The expression of 
tight junction proteins like claudin, ZO-1, and occludin, 
which are reduced in psoriatic skin, is correlated with 
VDR status, pointing out the role of vitamin D in the reg-
ulation of tight junction proteins in psoriasis  [87] . Fur-
thermore, vitamin D topical use normalized the expres-
sion and topography pattern of integrins and other acti-
vation markers like ICAM-1, CD26 and HLA-DR, which 
were altered on psoriatic skin  [88] . 

  The role of VDR polymorphisms in the risk of psoria-
sis was studied in several populations, with contradictory 
results. Richetta et al.  [89]  showed that among 5 common 
VDR polymorphisms (A-1012G, FokI, BsmI, ApaI, and 
TaqI), the A-1021G polymorphism is associated with the 
risk of psoriasis in an Italian population. In another study, 
ApaI and a specific haplotype of 5 VDR polymorphisms 
were associated with the risk of psoriasis in a Chinese 
population  [90] . In contrast, studies in Croatian and 
Egyptian populations did not find any role of VDR poly-
morphisms in psoriasis  [91–93] . The meta-analysis of 
studies investigating the role of VDR polymorphisms in 
psoriasis also suggests their ethnic specific association 
 [94, 95] . The VDR polymorphisms, besides conferring a 
risk of psoriasis, are also reported to modulate the re-
sponse of psoriasis patients to different treatment regi-
mens. Ryan et al.  [96]  showed that psoriatic patients with 
the VDR TaqI polymorphism had a shorter remission pe-
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riod when treated with NB-UVB. Similarly, other studies 
suggested a positive association of wild-type alleles of A-
1012G, FokI and TaqI VDR polymorphisms with topical 
calcipotriol response  [97, 98] . 

  Atopic Dermatitis 
 AD is a chronic or relapsing skin disorder caused by 

complex interactions between genetic, immunological, 
and environmental factors; it is characterized by chronic 
inflammation, disruption of the epithelial barrier, immu-
nological abnormalities and increased serum IgE.  

  Skin Barrier Defect in AD . The epidermis of AD pa-
tients displays a significant barrier disruption and tran-
sepidermal water loss, which sensitizes AD skin to aller-
gen penetration, bacterial, fungal, and virus invasion or 
colonization and inflammation. Various mechanisms are 
responsible for the barrier defect in AD: (1) deficiency or 
defects in structural proteins (like filaggrin, involucrin, 
loricrin, keratin K5 and K16, etc.), epidermal proteases, 
and protease inhibitors, (2) alteration in SC pH, and (3) 
decrease in skin ceramides, which supports lipid barrier 
and water retention  [99, 100] . So far, loss of function mu-
tation in the filaggrin gene represents the most significant 
genetic factor in the predisposition to AD, although only 
a fraction of patients (between a few and 50% depending 
on the populations studied) carry filaggrin mutations 
 [101, 102] .

   Immune Dysregulation in AD . The immune dysregula-
tion in AD is biphasic, with an initial Th2 phase in acute 
lesions, and Th0 and Th1 dominant inflammation in 
chronic lesions. Thus, there is an increased level of IL-4, 
IL-5, and IL-13 (Th2 cytokines) in the acute phase lesions, 
while Th1 cytokines like IFN-γ, GM-CSF, and IL-12 are 
predominant in the chronic disease. Th0 cells are transi-
tory and can differentiate into Th1 or Th2 cells  [99] . Be-
side alteration in Th cytokines, the majority of AD cases 
(approx. 80%) displays high serum IgE levels with spe-
cific IgEs to food allergens or aeroallergens  [103] . The 
outcome of Th cells in AD lesions is regulated by several 
factors. Thymic stromal lymphopoietin secreted by kera-
tinocytes in atopic skin primes DCs, which drives naïve 
Th cells towards Th2 polarization and induces produc-
tion of the proallergic cytokines IL-4, IL-5, IL-13, and 
TNF-α  [104] . The DCs observed in atopic lesions are 
mainly of myeloid origin and comprise 2 populations: 
Langerhans cells and inflammatory DCs. It was observed 
that Langerhans cells are involved in Th2 polarization, 
while inflammatory DCs promote Th1 polarization in 
chronic lesions  [105, 106] . T reg  cells play an important 
role in AD. Many studies have shown a high T reg  

(CD4+CD25+Foxp3+) population with normal immu-
nosuppressive activity in the peripheral blood of AD pa-
tients, which is also found to be positively correlated with 
the severity of the disease  [107–110] . However, when 
stimulated with  Staphylococcus  enterotoxin B, T reg  cells 
lost their immunosuppressive activity suggesting a mech-
anism of T-cell activation by  Staphylococcus aureus  in AD 
lesions  [107, 108] . There are few contradictory reports 
which suggested either low frequency or absence of T reg  
cells in the peripheral blood and in skin lesions of AD pa-
tients  [111, 112] .

  In addition to a defective adaptive immune system, 
AD patients have dysfunction in various components of 
the innate immune system like skin barrier disruption, 
diminished recruitment of innate immune cells (NK cells, 
pDCs, neutrophils) to the skin, TLR2 defects and reduced 
secretion of AMPs  [113, 114] .

  Role of Vitamin D in AD 
 The effect of vitamin D levels on the prevalence and 

severity of AD was the subject of a large number of stud-
ies which yielded heterogeneous results. Epidemiological 
studies have shown an increased AD prevalence in popu-
lations living in higher geographic latitudes, with lower 
sun exposure and consequently less vitamin D produc-
tion  [115, 116] . Also, in large population-based studies, it 
was observed that there is an increased likelihood of de-
veloping AD in individuals with either deficient or insuf-
ficient vitamin D levels  [117, 118] . Many observational 
studies including a meta-analysis have shown that the se-
rum vitamin D level is lower in children and adults with 
AD compared to controls, and reported an association 
between vitamin D deficiency and risk of atopic eczema 
 [119–121] . Also, the severity of AD was found to be neg-
atively correlated with the vitamin D level, with moderate 
and severe AD groups having lower vitamin D levels 
compared to the mild AD group; this finding was sup-
ported by the use of objective tools, such as the SCORAD 
(Scoring Atopic Dermatitis) index, which was found to be 
inversely correlated with vitamin D levels in AD patients 
 [120–123] . However, there are some contradictory re-
ports, which suggest either no role of vitamin D or a pos-
itive association of vitamin D levels with the risk of devel-
oping AD  [124, 125] . The maternal vitamin D level seems 
also to impact the risk of developing AD in infants: while 
2 studies suggested that a higher maternal intake of vita-
min D could increase the risk of infantile eczema  [126, 
127] , others observed that a lower vitamin D level during 
pregnancy induced a risk of AD in infants during early 
years of their life  [128] . Studies on the association of cord 
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serum 25(OH)D levels with infant AD are also contradic-
tory  [129–131] . The common polymorphisms in VDR 
and vitamin D-metabolizing genes have been investigat-
ed for their role in AD susceptibility. The VDR BsmI 
polymorphism increased the risk of AD in a Turkish pop-
ulation, and a specific haplotype of VDR BsmI, ApaI, and 
TaqI polymorphisms was overrepresented in severe AD 
patients in a German population  [132, 133] . In another 
report, among 6 common polymorphisms in CYP24A1 
and CYP27B1, CYP24A1rs2248359C allele and a specific 
haplotype were associated with an increased risk of severe 
AD  [134] . 

  As the majority of the literature suggests vitamin D 
deficiency as prominent risk factor of AD, studies have 
been carried out to examine the effect of vitamin D sup-
plementation on phenotypes of AD. Many clinical trials 
including their meta-analysis have shown that vitamin D 
supplementation results in significant improvement in 
AD severity (measured by SCORAD and Eczema Area 
and Severity Index)  [121, 135–138] . Di Filippo et al.  [138]  
suggested that vitamin D supplementation exerts its pos-
itive effect on AD by normalizing the altered Th1 and Th2 
cytokines like IL-2, IL-4, IL-6, and IFN-γ in AD patients. 
In another study, Drozdenko et al.  [139]  showed that the 
oral intake of vitamin D increases the frequencies of 
CD38+ B cells to enhance the B-cell receptor-mediated 
response and decreases the IFN-γ and IL-17 T-cell cyto-
kine response in vitamin D-deficient individuals. Addi-
tionally UVA and UVB phototherapy is widely used in 
AD treatment because of its effects in the T cell-mediated 
immune response, and it is suggested that the beneficial 
effect of UVA/UVB phototherapy is also mediated by the 
correction of the vitamin D deficiency or insufficiency in 
AD patients  [72] . An increased IgE response to common 
environmental and food allergens is a common feature in 
AD. It was found that vitamin D has an inhibitory effect 
on the allergic response: treatment of vitamin D sup-
pressed the IgE production by human B cells and damp-
ened IgE-mediated mast cell activation in both in vitro 
and in vivo settings  [140] . Other than the effect on the 
adaptive immune system, vitamin D supplementation 
ameliorates the AD lesions by restoring the epidermal 
barrier defects and correcting the deregulated innate im-
mune response. In fact, Kanda et al.  [141]  observed that 
a low serum vitamin D 3  level correlated with low serum 
LL-37 in AD patients. Also, the topical application and 
oral supplementation of vitamin D upregulated the ex-
pression of LL-37 in lesional and nonlesional skin in AD 
patients  [114, 142] . More recently, a clinical improve-
ment, assessed by a lower AD severity score, was noted in 

AD patients, concomitantly to the increase in the LL-37 
level, after vitamin D supplementation  [143] . Büchau et 
al.  [144]  suggested that the positive effect of vitamin D on 
AMPs could be mediated by the inhibition of the expres-
sion of Bcl-3, which is upregulated in AD lesions causing 
a reduced expression of cathelicidin. AD patients are sus-
ceptible to the skin colonization and infection by  S. au-
reus , which through the production of exotoxins with su-
pra-antigenic properties aggravates the disease. Gilaberte 
et al.  [145]  have observed a significant association be-
tween low serum vitamin D levels and certain virulence 
genes of  S. aureus  in isolates of AD children suggesting 
some role of vitamin D deficiency in  S. aureus  coloniza-
tion. Thus, vitamin D supplementation could be promis-
ing in reducing the cutaneous  S. aureus  burden in AD 
patients. In fact, a recent clinical trial showed a reduction 
in the skin colonization by  S. aureus  and an improvement 
in clinical symptoms of AD patients, who received an oral 
supplementation of 2,000 IUs of vitamin D daily for 4 
weeks  [146] .

  AD patients are also prone to skin infections caused by 
herpes virus; this complication, known as eczema herpe-
ticum, is particularly common in AD children and could 
be life threatening. It has been demonstrated that LL-37 
is by far less expressed in skin of AD complicated by ec-
zema herpeticum compared to skin of patients with un-
complicated AD  [147] . Treatment by vitamin D has a 
beneficial effect in children with eczema herpeticum, and 
this effect seems to be mediated by an increase in the LL-
37 level in the skin  [143] . 

  Studies addressing the relationship between vitamin D 
and AD could be hampered by the geographic, seasonal 
and diet-related vitamin D variations in AD patients and 
healthy controls, and despite the myriad of studies advo-
cating the important role of vitamin D in AD, the rela-
tionship could not be stated with certainty. Animal stud-
ies evaluating the effect of vitamin D in AD are not con-
sistent either and yielded conflictual findings: some 
studies showed an induction of thymic stromal lympho-
poietin with topical application of calcitriol or its low cal-
cemic analog MC903, which resulted in AD- like syn-
drome in mice  [148, 149] . However, in an allergen-in-
duced animal model of AD, systemic administration of a 
low calcemic vitamin D agonist significantly improved 
the symptoms of atopic eczema by restoring the epider-
mal barrier and modulating the immune system  [150] . It 
was also observed that administration of a VDR agonist 
to allergen-induced AD mice selectively increased the fre-
quency of Foxp3+ T reg  cells, reduced the expression of 
IL-4 in a lesional skin model, and induced a significant 
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improvement in barrier function through robust induc-
tion of several skin barrier genes (like loricrin, involucrin, 
filaggrin, and transglutaminase) and AMP β-defensin.

  Conclusion 

 Beyond the classical phosphocalcic effect of vitamin D, 
its role in the proper functioning of several tissues/organs 
including the skin has been receiving a growing interest. 
Vitamin D exhibits a pleiotropic effect in the skin with its 
role as antiproliferative, prodifferentiative, antiapoptotic 
and immunomodulator. It is also intricately involved in 
many skin pathologies, and it positively influences the 
outcome of certain inflammatory dermopathologies. So 
far, therapeutic interventions (topical and systemic) 

based on vitamin D have been proved beneficial in pso-
riasis and AD. Future studies are needed to mechanisti-
cally and intensely explore the specific pathways affected 
by vitamin D using the latest advanced technologies and 
to assess the safety and efficacy of vitamin D-based treat-
ment regimens in various inflammatory skin diseases. 
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