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Given the notorious impact of cardiovascular disease (CVD) as the current leading cause 
of mortality worldwide, the prevention, identification and management of CV risk factors 
represents a priority in daily clinical practice. Several studies have shown the beneficial 
effects of dietary omega-3 polyunsaturated fatty acids (PUFAs) on CV health. Their 
derivatives, eicosapentaenoic acid and docosahexaenoic acid, intervene in multiple metabolic 
pathways, including: regulation of  the inflammatory response, by reducing the synthesis of 
pro-inflammatory cytokines; regulation of platelet aggregation, activation and adhesion, by 
modulating thromboxane A2 and plasminogen activator inhibitor-1 activity; regulation of the 
coagulation pathways, by reducing the carboxylation of vitamin K-dependent coagulation 
factors; improvement of endothelial function, given their effects on prostaglandin synthesis and 
endothelial nitric oxide synthase; reduction of serum lipids, through their effects on the hepatic 
synthesis of triacylglycerides, beta-oxidation of fatty acids and lipoprotein catabolism; and 
improvement of myocardial function via their membrane-stabilizing effects, and an increase 
in fluidity, size and distribution of membrane lipid rafts. Nevertheless, these effects appear 
to vary according to the type of PUFA ingested, dietary sources, daily dosing and individual 
factors inherent to the subject. Therefore, further studies are required to determine the ideal 
supplementation for each kind of patient and their particular CV profiles.
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INTRODUCTION

Cardiovascular disease (CVD) represents an ongoing 
global epidemic. In 2014, 27.6 million people were 
diagnosed with CVD worldwide,[1] and by 2030, it may 
be responsible for up to 23.5 million deaths yearly.[2] 

These trends are common in all westernized countries, 
including Latin America. In Venezuela, 29.47% of 
all mortality was attributed to CVD in 2012.[3] Given 
the heavy burden CVD represents for public health 
systems, prevention has become a key component 
in clinical practice and research, oriented to the 
identification and management of several risk factors, 
both modifiable and non-modifiable.[4] Regarding 
modifiable risk factors, westernized dietary patterns, 
notable for their high intake of dairy products, refined 
carbohydrates and saturated fats, have been strongly 
linked with the development of not only CVD, but 
also hypertension (HTN), obesity and type 2 diabetes 
mellitus.[5-7]

In 1980, Bang et al.[8] studied the diet of the Eskimo 
population of Greenland, characterized by high intake 
of foods rich in long chain polyunsaturated fatty acids 
(LC-PUFAs), and paradoxically found a low incidence 
of CVD in these individuals.[9] From these pioneer 
studies, different epidemiological and interventional 
investigations have backed the cardioprotective role of 
n-3 LC-PUFAs.[10,11]

Although many beneficial CV effects have been 
ascribed to PUFAs, including hypolipidemic, 
antithrombotic, antihypertensive and antiarrhythmic 
properties,[12,13] the underlying molecular mechanisms 
remain to be elucidated. This review aims to offer an 
integrated state-of-the-art vision into the structure of 
PUFAs and their functions in the CV system.

GENERAL OVERVIEW OF PUFAS

Structure and classification
Fatty acids are molecules consisting of a long linear 
hydrocarbon chain that generally contains a pair 
number of carbon atoms between 12 and 24, with 
a carboxyl (-COOH) group in one end and a methyl 
(-CH3) group in the other.[14] They are termed saturated 
fatty acids when only simple bonds exist between the 
carbon atoms, while those that have one or more 
double bonds are known as unsaturated fatty acids.[15] 
The latter include widely recognized nutritionally 
essential molecules for humans and other animal 
species, including linoleic acid (LA) and α-linoleic acid 
(ALA).[16]

Fatty acids with more than one double bond in their 

chain are called PUFAs, which are classified in 2 main 
subgroups: n-6 long chain PUFAs (n-6 LC-PUFAs) 
and n-3 long chain PUFAs (n-3 LC-PUFAs), which 
are commonly referred to as omega-6 and omega-3 
PUFAs, respectively.[17] The former are LA derivatives 
with 2 double bonds, which are located 6 carbons away 
from the methyl end (18:2Ω6); whereas n-3 LC-PUFAs 
derive from ALA and have 3 double bonds, with the first 
one being in the third carbon of the chain (18:3Ω3)[18,19] 
[Figure 1].

Metabolism and general biologic functions of 
essential PUFAs
The metabolism of both types of PUFAs ends in 
the formation of eicosanoids, which are biologically 
active compounds including prostaglandins (PGs), 
thromboxanes (TXs) and leukotrienes (LTs).[18] 

As shown in Figure 1, arachidonic acid (AA) is 
synthetized from LA (n-6), and is converted by the 
action of cyclooxygenase (COX) and lipoxygenase 
(LOX) into 2-series PGs and TXs and 4-series LTs and 
lipoxines. Although these mediators intervene in both 
the establishment and resolution of the inflammatory 
response, their net effect is predominantly pro-
inflammatory.[19,20] In contrast, ALA (n-3) is a precursor 
of eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA), from which 3-series PGs and TXs, 
as well as 5-series LTs, lipoxins, resolvins and 
neuroprotectins are derived. These compounds have 
chiefly anti-inflammatory effects,[17] which is why 
current nutritional guidelines are oriented towards an 
increase in n-3 PUFAs intake.[21-24] Furthermore, the 
products of both series mediate the regulation of other 
physiological processes, such as the maintenance 
of cell membrane architecture, especially through 
their arrangement in lipid rafts,[25,26] and play a role 
in hemostasis and vasoconstriction, which are further 
explained ahead.[18,27]

Role of PUFAs in cell membrane maintenance
The long hydrocarbon chains and double bonds in EPA 
and DHA exert modifications on the cell membrane 
due to their length and degree of unsaturation.[28] 
These molecules have been demonstrated to 
increase membrane fluidity and modify the size and 
distribution of lipid rafts in aortic endothelial cells 
and rat lymphocyte cultures.[29,30] Lipid rafts are 
dynamic membrane microdomains containing sterols, 
enriched sphingolipids and specific binding proteins, 
which attain a metastable resting state through a 
constellation of lipid-lipid, protein-lipid and protein-
protein bonds.[31] Incorporation of n-3 PUFAs in lipid 
rafts results in decreased cholesterol and sphingolipids 
in these microdomains.[32] This has been confirmed by 
systematic studies in membrane models that suggest 
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cholesterol to be incompatible with environments 
rich in highly unsaturated lipids, as observed in 
phospholipid bilayers containing DHA.[33]

Most of the research on n-3 PUFAs in membrane 
models has centered around DHA.[34] This molecule 
is deemed unique because it contains six double 
bonds and is very flexible, with quick rearrangements 
amidst multiple conformational states.[29] 
Spectrometry studies have revealed DHA-containing 
phospholipids to form their own domains with a 
different arrangement in presence of sphingolipids 
and cholesterol, excluding saturated acyl chains 
from their structure.[35] In addition, because n-3 
PUFAs tend to reject cholesterol, DHA-containing 
phospholipids tend to create non-raft domains which 
may be physically separated on cell membranes. 
This allows proteins to more readily occupy a space 
according to its requirements in a specific domain or 
in amplified rafts.[36] An alternative model points out 
that n-3 PUFAs are probably incorporated in the rafts 
as nanodomains, forcing cholesterol out of rafts.[26] 
This model is also applicable to proteins within lipid 
rafts, where incorporation of n-3 PUFAs into lipid rafts 
forces proteins to relocate to non-raft domains.[26] 
Further research is required to fully understand the 
biologic importance and mechanisms underlying 
the lateral organization of lipid microdomains in cell 
membranes, as well as the modulatory effects of n-3 
PUFAs in this context.[32]       

MOLECULAR MECHANISMS OF PUFAS IN 
CARDIOVASCULAR HEALTH

Chronic pro-inflammatory states 
The anti-inflammatory effects of n-3 PUFAs have been 
widely reported.[37-40] One of the central mechanisms 
is the down-regulation of the synthesis of pro-
inflammatory cytokines such as tumor necrosis factor 
alpha, interleukin 6 and monocyte chemoattractant 
protein-1 (MCP-1)[41-44] in adipose tissue. This occurs 
when EPA and DHA bind to the G-protein coupled 
receptor (GPR120) in macrophages and adipocytes, 
causing its activation and internalization with 
β-arrestin-2, and forming the GPR120/β-arrestine-2 
complex.[45] This complex is then dissociated into the 
transforming growth factor beta (TGF-β) activated 
kinase 1 binding protein 1 (TAB1) that results in the 
inhibition of TGF-β activated kinase 1 (TAK1), and 
thus the down-regulation of the nuclear factor kappa 
B (NF-ĸB) and the inhibition of its function.[44] Besides, 
the incorporation of DHA to the lipid membrane 
disrupts the signaling of toll-like receptor 4 (TLR-4) by 
impeding its translocation to the lipid raft, and inhibiting 
the signaling pathway of MD2/TRIAP-MyD88/IRAK-
TRAF6/IKKβ[41,46,47] [Figure 2]. Also, EPA and DHA 
cause the down-regulation of nicotinamide adenine 
dinucleotide phosphateoxidase, which induces the 
production of reactive oxygen species, a requirement 
for TLR-4 signaling.[41,42] These pathways converge in 
the inhibition of NF-ĸB, diminishing the inflammatory 

Figure 1: Metabolism of n-6 and n-3 polyunsaturated fatty acids. n-3 and n-6 polyunsaturated fatty acids are derived from linoleic acid 
(LA) and a-linoleic acid (ALA). Through various enzymatic reactions, LA is converted into arachidonic acid, responsible of the formation of 
mainly proinflammatory PG and TX. On the other hand, ALA is converted into EPA and DHA, which derive into mostly antiinflammatory PG 
and TX. PGE2: prostaglandin E2; PGD2: prostaglandin D2; PGF2a: prostaglandin F2a; PGI2: prostacyclin I2; PGE3: prostaglandin E3; 
PGI3: prostacyclin I3; TX: thromboxanes; LT: leukotrienes

PGE2,
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response.[44,45] In addition n-3 PUFAs may also prevent 
macrophage infiltration in adipose tissue.[41]

Thrombogenesis
The antithrombotic properties of PUFAs have been 
described since the 1980s, owing to the pioneer studies 
by Bang and Dyerberg.[48] These studies demonstrated 
that the Eskimo diet, characterized by high intake 
of seafood rich in n-3 PUFAs (mainly fish, seal and 
whale), was associated with a low incidence of CVD, 
as well as a decrease in thrombogenesis, evident by 
high incidence of hemorrhages.[49,50]

Even though these effects have been described in 
populations of different latitudes,[51-53] the inverse relation 
between n-3 PUFAs intake, platelet aggregation, 
coagulation and fibrinolysis is still not completely 
elucidated;[54] however, both in vitro and in vivo studies 
have reported that n-3 PUFAs supplementation 
reduces TXA2 synthesis, platelet activation and 
adhesion,[55] and decreases plasminogen activator 
inhibitor-1 (PAI-1) activity and concentration.[56]

The mechanisms by which n-3 PUFAs decrease 
thrombogenesis have been extensively studied, 
especially in platelets. High n-3 PUFA intake, 
especially EPA and DHA, appears to favor the 

replacement of AA in cell membrane phospholipids, 
decreasing the binding rate of AA to COX-1, resulting 
in reduced TXA2 synthesis, a vasoconstriction and 
platelet aggregation-promoting molecule.[57] On the 
other hand, this secondarily increases the production 
of TXA3, which exerts a significantly lower biological 
activity than TXA2.[58] Another mechanism observed 
with in vivo studies is the capacity of n-3 PUFAs 
to act as TXA2 and PG H2 antagonists, through 
the synthesis of protectin DX, a product of DHA 
dihydroxylation obtained by the action of LOX.[59] This 
compound also has the capacity to inhibit both COX-1 
and COX-2 in platelets and neutrophils, significantly 
decreasing both platelet activation and aggregation 
[Figure 3].[60,61]

In contrast, views on the mechanisms underlying 
the anticoagulant effects of n-3 PUFAs remain 
controversial. Some studies suggest these molecules 
may interfere in the carboxylation of vitamin 
K-dependent coagulation factors II, VII, IX and X;[62,63] 
while other studies attribute more relevance to a 
modification in serum fibrinogen levels.[64] Similarly, 
the role of n-3 PUFAs in fibrinolysis remains unclear,[65] 
however it has been proposed that by unknown 
mechanisms, they alter PAI-1 synthesis through a 
genetic pathway.[66]      

Dyslipidemia
The effects of n-3 PUFAs on serum lipids were also 
first ascertained by Bang and Dyerberg[67] in their 
emblematic study on the Eskimo population. Results of 
this study showed that individuals who stayed in their 
birthplace had lower levels of triacylglycerides (TAG), 
very low-density lipoproteins (VLDL-C) and low-density 
lipoproteins (LDL-C), whereas those who later migrated 
to Denmark showed a serum lipid profile similar to 

Figure 2: Role of polyunsaturated fatty acids in proinflammatory 
cytokine synthesis. EPA and DHA inhibit the production of 
proinflammatory cytokines through different mechanisms: (1) 
binding of EPA and DHA to the G protein-coupled receptor 
(GPR120) leads to its activation and binding to β arrestin-2, which 
then dissociates into TAB1 and inhibits TAK1, thus interrupting 
the IKKβ/NF-κB cascade; (2) the inclusion of EPA and DHA 
into the lipid bilayer, which modifies lipid rafts and interrupts the 
translocation of TLR-4 and the MD2/TRIAP-MyD88/IRAK-TRAF6/ 
IKKβ/NF-κB pathway, thus inhibiting the production of cytokines, 
showing the antiinflammatory action of EPA and DHA

Figure 3: Role of polyunsaturated fatty acids in thrombogenesis. 
n-3 PUFAs exert their antithrombotic effect on platelets via two 
main processes: (1) replacement of arachidonic acid in the platelet 
membrane, which causes a decrease in the action of COX-1 
on arachidonic acid, diminishing TXA2 synthesis and favoring 
the synthesis of TXA3; (2) activity as TXA2 antagonists through 
the synthesis of protectin DX, a molecule from the lipoxygenase 
pathway, which inhibitis COX-1 and COX-2. PUFA: polyunsaturated 
fatty acids; TXA2: thromboxane A2; TXA3: thromboxane A3; COX-
1: cyclooxygenase 1; COX-2: cyclooxygenase 2



                                                                                           Vessel Plus ¦ Volume 1 ¦ September 26, 2017

Calvo et al.                                                                                                                                                              Omega-3 fatty acids in cardiovascular health

120

that of the Danish population. Thus, environmental 
factors - namely dietary n-3 PUFA intake - may exert a 
preponderant impact on serum lipids.[68]

Among these actions on lipid metabolism, the TAG-
lowering effect has been found to be the most robust in 
large epidemiological studies;[69] however, it appears to 
be largely modifiable by the overall dietary composition, 
as elevated carbohydrate and saturated fat intake may 
surpass the effect of n-3 PUFAs due to increased TAG 
synthesis and storage.[69,70] In addition, the magnitude 
of the lipid-lowering effect of n-3 PUFAs depends on 
each subject’s basal serum lipid levels, as greater 
decreases are observed in subjects with higher TAG 
levels.[70,71]

The mechanisms by which n-3 PUFAs achieve 
these effects on TAG are related to the decrease 
of their hepatic synthesis via competitive inhibition 
of the enzymes involved, especially 1,2 diglyceride 
acyltransferase, which catalyzes the conversion 
of diacylglycerides into TAG.[72] In addition, PUFAs 
have high affinity for several peroxisome proliferator-
activated receptor (PPAR) subtypes, particularly 
PPAR-α, a nuclear transcription factor highly 

expressed in adipose tissue and skeletal muscle.[73] 
When PPAR-α is activated by specific substrates like 
PUFAs, it favors the synthesis of enzymes involved 
in lipid catabolism.[74] Therefore, n-3 PUFA intake 
promotes the β-oxidation of fatty acids in peripheral 
tissues, which contributes to the catabolism of 
circulating TAG in chylomicrons and VLDL-C. This 
results in diminished traffic of non-esterified fatty 
acids to hepatocytes, causing an additional reduction 
in the input of substrates for TAG synthesis, further 
decreasing the hepatic production of VLDL-C.[72]

Additionally, PUFAs downregulate the sterol regulatory 
element-binding protein 1c (SREBP1c), which 
modulates the expression of genes involved in the 
synthesis of fatty acids and TAG.[75,76] PUFAs inhibit 
SREBP1c activity in the liver by antagonizing the 
liver X receptor alpha, a nuclear receptor found in 
hepatocytes that regulates the synthesis of SREBP 
and the SREBP inhibitor protein.[77,78] Another reported 
genetic mechanism is the ability of PUFAs to inhibit 
the hepatic maturation of the carbohydrate-responsive 
element-binding protein, a transcription factor related 
to the expression of enzymes involved in TAG 
synthesis[79] [Figure 4].    

Figure 4: Role of polyunsaturated fatty acids in triacylglyceride metabolism. PUFAs decrease TAG through various mechanisms: (1) 
competitive inhibition of DAT; (2) activating PPAR-α, which promotes the transcription of enzymes involved in lipolysis and fatty acid 
transport; (3) suppressing the activity of SREBP-1c which regulates the expression of genes involved in fatty acid and TAG synthesis. 
PUFA: polyunsaturated fatty acid; DAT: 1,2 diglyceride acyltransferase; TAG: triacylglycerides; PPAR-α: peroxisome-proliferator activated 
receptor alpha; RXR: retinoid X receptor; LXR-α: liver X receptor alpha; SREBP-1c: sterol regulatory element-binding protein 1c; SCAP: 
SREBP inhibitor protein; PPRE: PPAR response elements
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These TAG-lowering mechanisms are accompanied 
by a secondary decrease of VLDL-C: in vitro studies 
have described PUFA-mediated  activation of non-
proteosomal degradation of apolipoprotein B (Apo B). 
This protein, found in the membrane of chylomicrons, 
LDL-C and VLDL-C, allows the transport of lipids 
towards peripheral tissues.[80] Activation of this pathway 
results in the selective degradation of the Apo B which 
would have been integrated into naïve VLDL, thus 
reducing liver secretion of this lipoprotein.[81,82]

Several randomized studies have shown that PUFAs 
also contribute to a slight increase of high density 
lipoprotein (HDL-C), ranging between 2.3-7.9% for 
EPA, and 2.9-18.3% for DHA.[83,84] PUFA-mediated 
reduction of cholesteryl ester transfer protein (CETP) 
activity may be accountable for this effect, as it would 
lead to a decrease in the net flow of cholesterol esters 
from HDL-C to LDL-C and VLDL-C. Recent in vitro 
studies also suggest PUFAs to be regulators of CETP 
and apolipoprotein A1 gene expression.[85,86]

On the other hand, the effects that PUFAs exert on 
LDL-C are yet to be defined. A study on adult women 
by Ooi et al.[87] where the effects of diets with high 
and low fish intake (1.23 g/day and 0.27 g/day of 
EPA and DHA, respectively) were assessed showed 
a non-significant decrease in serum LDL-C levels for 
both diets. However, significantly lower Apo-B100 
concentration, greater LDL-C Apo-B100 production 
rate and higher conversion percentage of TAG-rich 
lipoproteins (TRL) into LDL-C were reported in high fish 
intake diets. Other studies have reported that EPA and 
DHA supplement intake considerably increases LDL-C 
levels when compared to placebo and EPA-exclusive 
intake.[88] However, recent evidence suggest that EPA 
as opposed to DHA has more prominent effects on 
LDL in patients with hyper-TG due to its antioxidant 
properties in various Apo B-containing proteins,[89] 

improving secondarily endothelial function and 
inflammatory profile.[90] Studies in animals suggest that 
very high intake of PUFAs of marine origin increases 
the union of the TRL to the endothelial LPL, prolonging 
the interaction period and thus resulting in a boost 
of LDL-C formation. Furthermore, very high intake of 
n-3 PUFAs has been found to boost the production of 
smaller TRL with less amount of Apo-E, which show a 
tendency to convert into LDL-C;[91] as well as increase 
the expression of hepatic LDL-C receptors, amplifying 
its catabolism.[92] Indeed, the effects of PUFAs on 
LDL-C levels appear to significantly vary across 
specific PUFA types and quantity.[88,89]

Hypertension
The role of HTN as one of the main independent risk 

factors for CVD has been widely recognized along with 
the role of n-3 PUFAs on its management.[7] However, 
recent findings have shown that maintaining normal 
blood pressure (BP) levels even in non-hypertensive 
individuals significantly lowers the incidence of CVD, 
representing important evidence for the use of n-3 
PUFAs as a powerful preventive intervention.[93] 
A recent study by Huang et al.[94] on 1,154 Chinese 
adults found hypertensive subjects to have lower 
plasma PUFA concentrations when compared to 
healthy counterparts. This echoes the results of a 
previous study on 447 Eskimo people, where both 
high dietary intake and elevated plasma levels of n-3 
PUFAs were associated with lower levels of diastolic 
blood pressure.[95]

PUFAs may regulate BP through various mechanisms, 
most powerfully through conversion into vasodilator 
PG and promotion of renin release from the kidney.[96] 
Moreover, it has been demonstrated that a diet 
rich in n3-PUFAs suppresses the activity of the 
angiotensin-converting enzyme, reduces the 
formation of angiotensin II, improves the generation 
of eNO (endothelial nitric oxide) and suppresses the 
expression of TGF-β.[97] Recently, in murine models 
with angiotensin II-dependent HTN, the combination of 
a soluble epoxide hydrolase inhibitor along with a diet 
rich in n3-PUFAs was tested, showing higher levels of 
EPA and DHA epoxides and a reduction of inflammatory 
markers in the kidney (PGs and MCP-1), contributing 
to a decrease in systolic BP and inflammation.[98]

Various cytochrome P450 (CYP) isoforms have also 
been identified in the physiological production of 
active metabolites of AA, EPA and DHA as alternative 
substrates.[99] In this context, Agbor et al.[100] 

demonstrated the contribution of isoform CYP1A1 
tothe metabolism of n3-PUFAs, and the activation 
of endothelial nitric oxide synthase and consequent 
increase innitric oxide (NO) bioavailability associated 
with a diet rich in n3-PUFAs [Figure 5].

Furthermore, a study by Hoshi et al.[101] exposed the 
activation of large conductance Ca2+-activated K+ 
channels by DHA, through a fast and reversible stimulus 
independent of Ca2+ concentration. However, the exact 
bonding site remains to be identified. The activation of 
these channels in smooth muscle cells allows passive 
K+ efflux, which translates into the hyperpolarization of 
the cell membrane and thus its hypotensive effect.[102]

On the other hand, modifications in fatty acid 
composition in the lipid matrix of the cell membrane 
play an important role in the pathogenesis of 
hypertension.[103] A decrease of PUFAs in the cell 
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membrane of erythrocytes leads to a decrease in 
the negative charge of the membrane, with reduced 
phospholipid fluidity, activation of the synthesis of 
proinflammatory eicosanoids, and increased  sensitivity 
of arterial smooth muscle cells to vasoconstrictive 
effects.[103,104]

Myocardial function
Reports from different human and animal models have 
demonstrated that n-3 PUFAs improve left ventricular 
inotropic function, without causing hypertrophy 
or increase in blood pressure.[105] The underlying 
mechanism involves an increase in the activity of myosin 
ATPase and Na+/K+ ATPase, and the expression of 
Ca2+ ATPase in the sarcoplasmic reticulum, which are 
associated with positive inotropism, and maintenance 
of intra-sarcoplasmic reticulum calcium concentration 
and the sodium calcium exchanger (NCX).[106,107] 

Furthermore, an indirect effect is achieved through 
an increase in ventricular efficiency, which is defined 
as the production of the highest ejection volume with 
the lowest possible oxygen consumption, and the 
decrease in blood pressure.[108] This is possible due 
to the incorporation of DHA in the cell membrane,[109] 

influencing the eicosanoids mechanism and 
modulating cellular Ca2+ and its signaling pathways.[110] 
On the other hand, it has also been attributed to the 
shortening in the monophasic action potential due to 
the suppression of ATP-dependent K+ channels in the 
sarcolemma.[111]

Another proposed mechanism is the increase in the 
Na+/K+ ATPase activity, which boosts Na+ 
concentrations, diminishing the intracellular Ca2+ 

concentrations due to its effect in NCX activity in the cell 
membrane.[112] In addition, it has been demonstrated 
that the Na+/K+ ATPase activation modulates the 
function of L-type Ca2+ channels, which causes 
a greater release of calcium by the sarcoplasmic 
reticulum and higher intracellular Ca2+ gradients during 
systole, increasing contraction strength.[113]

Cardiac arrhythmia
Several studies have reported an association between 
n-3 PUFA intake and a lower risk of CVD-related 
death, specifically from ischemic events, where the 
myocardium is more prone to suffer irregularities in its 
electric activity that can lead to sudden death.[114,115]

Myocardial cells at the border of the ischemic zone 
have a relatively depolarized resting potential and can 
potentially generate ventricular fibrillation because of 
how easily they can be excited.[114] Because of this, an 
elevation in n-3 PUFAs stabilizes the high excitability 
of these partially depolarized cells in the ischemic 
myocardium. This prevents spontaneous or premature 
depolarization,[116] resulting in a longer refractory 
period and an increase in the voltage needed for the 
cellular depolarization.[117-120] More specifically, n-3 
PUFAs can inhibit voltage-dependent Na+, K+ and 
Ca2+ channels, as well as Na+/Ca2+ exchangers and 
Ca2+-activated K+ channels.[121] Consequently, these 
changes lower membrane excitability,[122] translating to 
a net membrane-stabilizing effect.[116,123]

Finally, an antiarrhythmic mechanism has been 
implicated in the role that n-3 PUFAs play in autonomic 
control, by increasing the vagal tone.[124,125] Recent 

Figure 5: Role of polyunsaturated fatty acids in hypertension. n3-PUFAs intervene in blood regulation through the following pathways: (1) 
conversion into prostaglandins via the cyclooxygenase pathway, causing vasodilation of the smooth muscle in arterial walls; (2) inhibition 
of ACE, reducing the synthesis of AT-II, thus leading to a decrease in blood pressure; (3) promotion of cytochrome P450 isoforms such 
as CYP1A1, which contributes to the activation of eNOS, increasing the bioavailability of nitric oxide and thus causing vasodilation; (4) 
incorporation into the lipid matrix of the erythrocyte membrane, where they lead to a an increase, and a decrease in the sensitivity of arterial 
smooth muscle cells to vasoconstrictive effects. ACE: angiotensin-converting enzyme; AT-II: angiotensin II; eNOS: endothelial nitric oxide 
synthase; PUFA: polyunsaturated fatty acids



                Vessel Plus ¦ Volume 1 ¦ September 26, 2017

Calvo et al.                                                                                                                                                              Omega-3 fatty acids in cardiovascular health

123

evidence highlights that the effect n-3 PUFAs exert 
on the electrophysiology of the ventricles and atria 
relies on their favorable action on cell-cell connections 
by modulating the expression and phosphorylation of 
connexin-43[125,126] [Figure 6]. 

Ischemia/reperfusion 
Although the restoration of blood flow in the ischemic 
myocardium is essential for tissue survival during 
acute myocardial infarction, its reperfusion may 
directly accelerate the ischemic process or increase 
the myocardial injury in a phenomenon known as 
“reperfusion injury”.[127-129] Important studies have 
reported that this event is responsible for up to 50% 
of the final infarction size.[130] PUFAs appear to be 
associated with reduced ischemic/reperfusion injury 
and thus with a better recovery after a coronary event.[131]

During ischemia/reperfusion, increased n-3 PUFA 
content in the mitochondrial membrane may contribute 
to stabilization and thus lower myocardial oxygen 
consumption (MVO2), thereby attenuating the 
thermodynamic inefficiency caused by hypoxia.[132,133] 
In addition, a lower MVO2 could diminish vulnerability 
to arrhythmia through the energetic maintenance 

of transmembrane potentials during episodes of 
ischemia.[133]

A study on 211 patients with ST segment elevation 
myocardial infarction who underwent reperfusion by 
percutaneous coronary intervention found patients with 
higher levels of n-3 PUFAs (EPA + DHA ≥ 155 mg/mL) 
had a lower incidence of reperfusion injury than 
those with lower levels of n-3 PUFAs (EPA + DHA < 
155 mg/mL).[134] Although the antiarrhythmic effect may 
exert the most potent impact in ischemia/reperfusion 
injury,[135] other supplementary actions may also 
intervene, including antithrombotic, anti-inflammatory 
and vasoactive effects.[136-138]

CONCLUSION

As has been described in review, n-3 PUFAs boast 
several beneficial effects in CV physiology and 
pathophysiology [Figure 7]. Notwithstanding current 
available evidence supporting the administration of 
n-3 PUFAs as a therapeutic intervention in CVD, 
further research is required to better characterize the 
underlying molecular mechanisms, as well as refine 
recommendations for their clinical use. Indeed, one 

Figure 6: Antiarrhythmic effects of polyunsaturated fatty acids. n-3 PUFAs show several potential antiarrhythmic properties: (1) membrane 
potential stabilization by decreasing transmembrane io trafficn; (2) inhibition of the activity and expression of connexins, decreasing the 
conductivity of myocardial tissue; (3) increase in vagal tone, decreasing heart rate, conductivity and myocardial excitability. NCX: sodium-
calcium exchanger; Cx43: connexin-43; PUFA: polyunsaturated fatty acids
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of the most pressing issues is the assessment of 
potential adverse effects linked to the therapeutic 
implementation of n3-PUFAs, along with the 
determination of adequate dosing and sources for these 
molecules in a myriad of specific clinical scenarios.
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