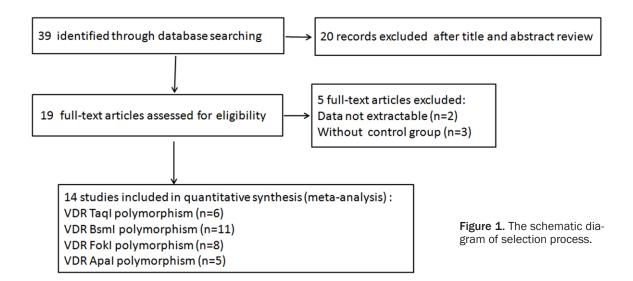
Original Article Association between Vitamin D Receptor polymorphisms and rheumatoid arthritis risk: a meta-analysis

Wei Wang¹, Ailing Wu², Yongqiang Zhou¹, Yongping Wang¹, Kuangzhong Cao¹

Departments of ¹Orthopedics, ²Anesthesiology, The First People's Hospital of Neijiang, Neijiang 641000, Sichuan, China

Received December 5, 2016; Accepted December 30, 2016; Epub February 15, 2017; Published February 28, 2017


Abstract: The aim of this study was to identify whether vitamin D receptor (VDR) variants were implicated in Rheumatoid arthritis (RA) pathogenesis. Relevant case-control studies published between 2000 and 2016 were searched in electronic databases. Odds ratio (OR) with its corresponding 95% confidence interval (CI) were employed to calculate extracted data. Total fourteen studies were screened out, including 2359 patients and 2764 controls, and focusing on four genetic variants (TaqI, BsmI, FokI and ApaI). Our results found that T allele of TaqI (T vs. t: OR=1.40, 95% CI=1.08-1.82, P=0.01), B allele of BsmI (B vs. b: OR=0.84, 95% CI=0.75-0.94, P=0.003), and F allele of FokI (F vs. f: OR=1.2495% CI=1.05-1.47, P=0.01) polymorphisms were associated with increased the risk of RA in total populations. This significant association was also found in TT genotype of TaqI, BB genotype and Bb genotyps of BsmI, and FF and Ff genotypes of FokI. Subgroup analysis found that BsmI variant among Africans, FokI variant among Asians and Caucasians were significantly increased the risk of RA. No relationship was found between ApaI variant and Ra risk. Our results demonstrated that polymorphisms of TaqI, BsmI, FokI, not ApaI in VDR gene might be involved in the development of RA.

Keywords: Rheumatoid arthritis, vitamin D receptor, polymorphism, meta-analysis

Introduction

Rheumatoid arthritis (RA) is the most common autoimmune disease worldwide, and is an important public health concern [1], associating with early death and systemic complications [2]. The characteristic of RA is muscular weakness around the affected joints, and symmetric joint inflammation, stiffness and pain [3]. It is the most severe form of arthritis, approximately affecting 0.5% to 1% of total population [4]. The incidence and prevalence of RA in populations vary substantially between geographic areas, relating with increased cardiovascular morbidity and mortality [5-7]. Smoking, diabetes mellitus, citrullination and genetic variability were shown to be involved in the immunopathogenesis of RA and might contribute to the prevalent [8-10]. Although major progress has been made in treating RA, many patients still experience premature work disability and co-morbidities. Therefore, there is an urgent need to explore new risk factors in helping early identification and treatment of the disease.

About 60% of RA risk is thought to be genetic. Studies have shown that identification of new genes associated with this disease might be useful in finding potential biomarkers for early detection and treatment [11]. Vitamin D, as an immunoregulatory hormone, is central to the control of bone and calcium homeostasis. The deficiency of vitamin D was shown increased the risk of cancer and adding vitamin D supplements might reduce cancer incidence and improve cancer prognosis and outcome [12]. Previous meta-analysis showed that low vitamin D intake was associated with an elevated risk of RA development [13]. Greater intake of vitamin D was associated with a lower risk of RA, as well as a significant clinical improvement was strongly correlated with the immunomodulating potential in vitamin D-treated RA patients

Einst suth su		0	Ethers in the second	Mean	Mean Age		ple size	OND	Genotype	
First author	Year	Country	Ethnicity	Cases Controls		Cases	Controls	SNP	methods	
Garcia-Lozano	2001	Spain	Caucasian	-	-	120	200	Taq I, Bsm I, Apa I	PCR-RFLP	
Lee CK	2001	Korea	Asian	16-82	16-82	157	211	Taq I, Bsm I	PCR-RFLP	
Goertz B	2003	Germany	Caucasian	57.4±14.8	52.8±15.5	62	40	Taq I, Bsm I, Fok I	PCR	
Maalej A-a	2005	France	Caucasian	-	-	100	100	Taq I, Bsm I, Fok I	PCR-RFLP	
Maalej A-b	2005	France	Caucasian	-	-	100	100	Fok I	PCR-RFLP	
Rass P	2006	Hungary	Caucasian	51.2±23.2	46.7±19.4	64	40	Bsm I	PCR	
Ghelani AM-a	2011	UK	Asian	-	-	134	149	Fok I, Bsm I	PCR-RFLP	
Ghelani AM-b	2011	UK	Caucasian	29-75	-	137	150	Fok I, Bsm I	PCR-RFLP	
Hitchon CA	2012	USA	Caucasian	47±15	35±12	448	704	Fok I	Sequenom	
Karray EF	2012	Tunisia	African	39.5±13.4	41.3±9	135	152	Fok I, Bsm I	PCR-RFLP	
Huang Y	2013	China	Asian	21-76	21-68	236	220	Bsm I, Fok I, Apa I	PCR-MassARRAY AnalyzerCompac	
Hussien YM	2013	Egypt	African	57.3±3.9	57.1±3.8	200	150	Bsm I	PCR-RFLP	
Li CH	2013	China	Asian	44±10	46±11	120	120	Bsm I, Apa I	PCR-RFLP	
Mosaad Y	2014	Egypt	African	46.91±11.73	40±15.83	128	150	Taq I, Bsm I, Fok I, Apa I	PCR-RFLP	
Shukla S	2014	India	Asian	-	-	112	125	Fok I	PCR-RFLP	
Tizaoui K	2014	Tunisia	Caucasian	51.66±5.70	44.64±7.93	106	153	Taq I, Apa I	PCR	

Table 1. Main ch	haracteristics	of included	studies
------------------	----------------	-------------	---------

-, not available; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; SNP, single nucleotide polymorphism.

[14]. Vitamin D initiates biological responses via binding to the vitamin D receptor (VDR) [15], which is a member of the steroid hormone receptor superfamily located on chromosome 12 (12q12-q14) that regulates gene expression in a ligand dependent manner [16]. VDR is active in almost all tissues that are necessary for the effects of vitamin D. Several genetic variations have been identified in the VDR gene. Among which, Taql (rs731236 in exon 9), Bsml (rs1544410 in intron 8), Apal (rs7975232 in intron 8) at the 3'-end, and Fokl (rs2228570 in exon 2) at the 5'-end of this gene were the most studied. These polymorphisms were shown to modulate the risk of some cancer sites [17], and associated with human diseases. Fokl polymorphism was found to have an overall significant association with prostate cancer, breast cancer, colorectal cancer, skin cancer and ovary cancer [18]. The t allele of Taql variant might be a risk factor for severe stone disease and recurrent stones [19]. Apal variant involved in the clinical presentation of patients with calcium urolithiasis [20].

Although several studies reported the role of VDR polymorphisms in RA risk, the results remain inconclusive. This may due to the non-

In RA patients and controls of included studies												
First author			Cases					Contro	bl			
Taql	TT	Tt	tt	Т	t	TT	Tt	tt	Т	t		
Garcia-Lozano	57	47	16	161	79	79	94	27	252	148		
Lee CK	147	10	0	304	10	109	9	2	227	13		
Goertz B	24	34	4	82	42	16	14	10	46	34		
Maalej A-a	42	35	18	119	71	33	49	13	115	75		
Mosaad Y	64	51	13	179	77	39	74	37	152	148		
Tizaoui K	44	52	10	140	72	56	80	17	192	114		
Bsml	BB	Bb	bb	В	b	BB	Bb	bb	В	b		
Garcia-Lozano	23	43	54	89	151	29	94	77	152	248		
Lee CK	1	8	148	10	304	3	17	191	23	399		
Goertz B	9	43	10	61	63	12	17	11	41	39		
Maalej A-a	19	35	42	73	119	13	48	35	74	118		
Rass P	13	26	25	52	76	11	16	13	38	42		
Ghelani AM-a	62	30	29	154	88	49	73	24	171	121		
Ghelani AM-b	35	51	34	121	119	43	53	33	139	119		
Karray EF	21	47	40	89	127	35	64	53	134	170		
Huang Y	0	30	206	30	442	0	29	191	29	411		
Hussien YM	53	78	69	184	216	48	60	42	156	144		
Li CH	32	43	45	107	133	40	36	44	116	124		
Mosaad Y	13	52	63	78	178	36	74	40	146	154		
Fokl	FF	Ff	ff	F	f	FF	Ff	ff	F	f		
Goertz B	34	23	5	91	33	14	23	3	51	29		
Maalej A-a	45	43	12	133	67	30	48	22	108	92		
Maalej A-b	48	40	12	136	64	37	50	13	124	76		
Ghelani AM-a	86	35	9	207	53	88	48	10	224	68		
Ghelani AM-b	45	64	23	154	110	57	62	25	176	112		
Hitchon CA	90	243	115	423	473	156	308	241	620	790		
Karray EF	49	49	10	147	69	46	72	34	164	140		
Huang Y	109	83	44	301	171	77	89	54	243	197		
Mosaad Y	69	51	8	189	67	93	55	2	241	59		
Shukla S	58	50	4	166	58	54	63	8	171	79		
Apal	AA	Aa	aa	А	а	AA	Aa	aa	А	а		
Garcia-Lozano	37	49	34	123	117	53	102	45	208	192		
Huang Y	119	90	27	328	144	108	81	31	297	143		
Li CH	44	60	16	148	92	12	44	64	68	172		
Mosaad Y	56	46	26	158	98	69	71	10	209	91		
Tizaoui K	39	53	14	131	81	49	78	26	176	130		

Table 2. Alleles and genotypes distribution for each polymorphismin RA patients and controls of included studies

equilibrium distribution of RA incidences and VDR polymorphisms. Furthermore, differential VDR expression relates to ethnicity [21], and may affects the genetic associations in RA [22]. Therefore, we conducted this meta-analysis to identify the exact association between VDR polymorphisms and RA risk in total and sub-group analysis by ethnicity.

Materials and methods

Study identification

We conducted a literature search on online electronic databases of PubMed, Emabase, Medline to retrieve relevant studies published between January 2000 and November 2016. The following medical subject heading (Me-SH): "rheumatoid arthritis or arthritis", "vitamin D receptor or VDR", "polymorphism or mutation or variant" as well as their combinations were used. References of included studies were also searched manually.

Inclusion criteria

Studies included must met the following criteria: 1) casecontrol studies; 2) evaluating the role of VDR polymorphisms in RA risk; 3) RA patients should be confirmed and met American College of Rheumatology criteria for RA [23]. controls should be unrelated ethnically matched individual; 4) the results were presented in odds ratio (OR) with its 95% corresponding confidence intervals (CI); and 5) genotype information in patients and controls was available to extract.

Data extraction

Two authors independently assessed the information of each included study to reach a consensus. The following

information was extracted: first author, published year, country, ethnicity, mean age, sample size, genotype methods and genotype distribution.

Statistical analysis

The association between VDR polymorphisms and RA risk was measured by pooled OR with

SNP	Group	Comparison	Number	Test of associa	Test of heterogenei			
				OR (95% CI)	Р	Ph	 ²	Mode
Taql	Total	T vs. t	6	1.40 (1.08, 1.82)	0.01	0.06	54%	R
		TT vs. tt	6	7.48 (5.40, 10.36)	<0.00001	0.19	32%	F
		Tt vs. tt	6	1.35 (0.70, 2.61)	0.37	0.02	63%	R
		TT+Tt vs. tt	6	1.60 (0.86, 2.98)	0.14	0.02	63%	R
		TT vs. Tt+tt	6	1.56 (1.23, 1.96)	0.0002	0.15	38%	F
	Caucasian	T vs. t	4	1.19 (0.97, 1.45)	0.10	0.89	0%	F
		TT vs. tt	4	5.88 (4.04, 8.55)	<0.00001	0.65	0%	F
		Tt vs. tt	4	1.15 (0.51, 2.59)	0.74	0.02	70%	R
		TT+Tt vs. tt	4	1.24 (0.65, 2.36)	0.52	0.07	57%	R
		TT vs. Tt+tt	4	1.30 (0.99, 1.71)	0.06	0.82	0%	F
	Asian	T vs. t	1	1.74 (0.75, 4.04)	0.20	NA	NA	NA
		TT vs. tt	1	30.98 (1.81, 531.44)	0.02	NA	NA	NA
		Tt vs. tt	1	5.53 (0.23, 130.34)	0.29	NA	NA	NA
		TT+Tt vs. tt	1	6.65 (0.32, 139.72)	0.22	NA	NA	NA
		TT vs. Tt+tt	1	1.48 (0.61, 3.62)	0.39	NA	NA	NA
	African	T vs. t	1	2.26 (1.59, 3.21)	<0.00001	NA	NA	NA
		TT vs. tt	1	14.01 (6.96, 28.19)	<0.00001	NA	NA	NA
		Tt vs. tt	1	1.96 (0.95, 4.05)	0.07	NA	NA	NA
		TT+Tt vs. tt	1	2.90 (1.46, 5.74)	0.002	NA	NA	NA
		TT vs. Tt+tt	1	2.85 (1.72, 4.71)	<0.00001	NA	NA	NA
Bsml	Total	B vs. b	12	0.84 (0.75, 0.94)	0.003	0.06	42%	F
		BB vs. bb		0.75 (0.60, 0.93)	0.009	0.17	29%	F
		Bb vs. bb	12	0.75 (0.63, 0.90)	0.002	0.04	46%	F
		BB+Bb vs. bb	12	0.75 (0.64, 0.89)	0.0007	0.21	24%	F
		BB vs. Bb+bb	11	0.86 (0.62, 1.20)	0.36	0.003	63%	R
	Caucasian	B vs. b	5	0.91 (0.76, 1.10)	0.32	0.95	0%	F
		BB vs. bb	5	0.93 (0.65, 1.33)	0.70	0.80	0%	F
		Bb vs. bb	5	0.81 (0.60, 1.09)	0.17	0.12	45%	F
		BB+Bb vs. bb	5	0.84 (0.64, 1.11)	0.22	0.49	0%	F
		BB vs. Bb+bb	5	0.96 (0.70, 1.31)	0.80	0.13	44%	F
	Asian	B vs. b	4	0.97 (0.78, 1.21)	0.79	0.24	28%	F
		BB vs. bb	3	0.87 (0.56, 1.35)	0.53	0.68	0%	F
		Bb vs. bb	4	0.72 (0.41, 1.24)	0.23	0.04	63%	R
		BB+Bb vs. bb	4	0.81 (0.60, 1.09)	0.16	0.54	0%	F
		BB vs. Bb+bb	3	1.09 (0.43, 2.75)	0.85	0.01	77%	R
	African	B vs. b	3	0.69 (0.47, 1.01)	0.05	0.02	74%	R
		BB vs. bb	3	0.51 (0.25, 1.03)	0.06	0.03	71%	R
		Bb vs. bb	3	0.70 (0.44, 1.10)	0.12	0.12	54%	R
		BB+Bb vs. bb	3	0.63 (0.38, 1.06)	0.08	0.04	69%	R
		BB vs. Bb+bb	3	0.65 (0.47, 0.89)	0.008	0.14	48%	F
okl	Total	F vs. f	10	1.24 (1.05, 1.47)	0.01	0.01	57%	R
		FF vs ff	10	1.45 (1.02, 2.07)	0.04	0.03	50%	R
		Ff vs. ff	10	1.38 (1.13, 1.67)	0.001	0.19	28%	F
				, , , _ , _ , ,)				•
		FF+Ff vs. ff	10	1.42 (1.19, 1.71)	0.0001	0.17	30%	F
		FF+Ff vs. ff FF vs. Ff+ff	10 10	1.42 (1.19, 1.71) 1.28 (1.01, 1.64)	0.0001 0.05	0.17 0.007	30% 61%	F R

Table 3. Meta-analysis of VDR polymorphisms and RA risk in total and subgroup analysis by ethnicity

		FF vs ff	6	1.31 (1.01, 1.70)	0.05	0.38	5%	F
		Ff vs. ff	6	1.48 (1.17, 1.86)	0.0009	0.54	0%	F
		FF+Ff vs. ff	6	1.37 (1.13, 1.68)	0.001	0.25	23%	F
		FF vs. Ff+ff	6	1.28 (0.92, 1.78)	0.15	0.03	60%	R
	Asian	F vs. f	2	1.35 (1.08, 1.69)	0.008	0.45	0%	F
		FF vs ff	2	1.57 (1.01, 2.43)	0.04	0.39	0%	F
		Ff vs. ff	2	1.07 (0.68, 1.67)	0.77	0.54	0%	F
		FF+Ff vs. ff	2	1.33 (0.89, 1.99)	0.17	0.49	0%	F
		FF vs. Ff+ff	2	1.47 (1.09, 1.99)	0.01	0.50	0%	F
	African	F vs. f	2	1.12 (0.44, 2.90)	0.81	0.0004	92%	R
		FF vs ff	2	0.89 (0.05, 16.63)	0.94	0.001	91%	R
		Ff vs. ff	2	0.82 (0.09, 7.77)	0.86	0.01	85%	R
		FF+Ff vs. ff	2	0.83 (0.06, 11.03)	0.89	0.003	89%	R
		FF vs. Ff+ff	2	1.17 (0.45, 3.05)	0.75	0.006	87%	R
Apal	Total	A vs. a	5	1.29 (0.76, 2.19)	0.35	<0.00001	92%	R
		AA vs. aa	5	1.50 (0.52, 4.33)	0.46	0.0001	91%	R
		Aa vs. aa	5	1.08 (0.43, 2.72)	0.87	0.0001	90%	
		AA+Aa vs. aa	5	1.22 (0.46, 3.23)	0.69	0.0001	92%	R
		AA vs. Aa+aa	5	1.42 (0.88, 2.29)	0.15	0.001	78%	R
	Caucasian	A vs. a	2	1.06 (0.84, 1.35)	0.61	0.40	0%	F
		AA vs. aa	2	1.11 (0.69, 1.79)	0.67	0.35	0%	F
		Aa vs. aa	2	0.86 (0.44, 1.67)	0.65	0.15	52%	R
		AA+Aa vs. aa	2	0.91 (0.60, 1.38)	0.67	0.17	46%	F
		AA vs. Aa+aa	2	1.24 (0.86, 1.77)	0.25	1.00	0%	F
	Asian	A vs. a	2	2.10 (0.58, 7.58)	0.26	<0.00001	97%	R
		AA vs. aa	2	4.22 (0.38, 46.67)	0.24	0.0001	95%	R
		Aa vs. aa	2	2.62 (0.63, 10.87)	0.19	0.002	95%	R
		AA+Aa vs. aa	2	3.05 (0.54, 17.24)	0.21	0.0001	94%	R
		AA vs. Aa+aa	2	2.28 (0.47, 10.93)	0.30	0.0001	94%	R
	African	A vs. a	1	0.70 (0.49, 1.00)	0.05	NA	NA	NA
		AA vs. aa	1	0.31 (0.14, 0.70)	0.005	NA	NA	NA
		Aa vs. aa	1	0.25 (0.11, 0.56)	0.0009	NA	NA	NA
		AA+Aa vs. aa	1	0.28 (0.13, 0.61)	0.001	NA	NA	NA
		AA vs. Aa+aa	1	0.91 (0.57, 1.47)	0.71	NA	NA	NA

Number, number of included studies; OR, odds ratio; 95% Cl, 95% confidence intervals; F, fixed-effect model; R, random-effect model; NA, not applicable.

95% Cl. The significance of the pooled OR was determined by the Z test, and a *P* value less than 0.05 was considered significant. The allelic model (M vs. m), homozygote model (MM vs. mm), heterozygote model (Mm vs. mm), dominant model (MM+Mm vs. mm) and recessive model (MM vs. Mm+mm) were examined to evaluate the strength of association. The l² test and the Q-statistic test were used to calculate the between-study heterogeneity. The fixed-effect model was used when the effects are assumed to be homogenous (a *P*-value more than 0.10 for the Q-test and l² less than 50%), otherwise, the random-effect model was em-

ployed. Funnel plot asymmetry was used to assess the publication bias. Analyses were performed using the software Review Manange5 (Oxford, England, UK). All *p*-values were two-sided.

Results

Characteristics of included studies

Figure 1 showed the selection process of search. Finally, we screened out fourteen casecontrol studies (twelve in English and two in Chinese) [22, 24-36] that reporting the association between VDR polymorphisms and RA risk,

	ents	Contro	ols		Odds Ratio)				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	Year		M-H, Ra	ndom, 9	5% CI	
Garcia-Lozano	161	240	252	400	21.2%	1.20 [0.85, 1.68]	2001			+∎-		
Lee CK	304	314	227	240	7.5%	1.74 [0.75, 4.04]	2001			+	-	
Goertz B	82	124	46	80	12.6%	1.44 [0.81, 2.57]	2003			+		
Maalej A-a	119	190	115	190	18.0%	1.09 [0.72, 1.65]	2005			+		
Mosaad Y	179	256	152	300	20.7%	2.26 [1.59, 3.21]	2014			-		
Tizaoui K	140	212	192	306	20.0%	1.15 [0.80, 1.67]	2014			-		
Total (95% CI)		1336		1516	100.0%	1.40 [1.08, 1.82]				•		
Total events	985		984									
Heterogeneity: Tau ² =	0.05; Chi ²	= 10.77	, df = 5 (F	⊃ = 0.0€	6); l² = 54%	0				+		400
Test for overall effect:	Z = 2.54 (F	P = 0.01)				Fa	0.01 avours [0.1 experimenta	I] Favo	10 ours [cont	100 rol]

Figure 2. Forest plot of the association between Tac	ul variant and RA risk in allele model (T vs. t) in total population

А		ents	Contro	ols		Odds Ratio		Odds Ratio						
_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, Fixe	d, 95% Cl			
	Garcia-Lozano	57	73	79	200	31.8%	5.46 [2.93, 10.17]	2001						
	Lee CK	147	147	109	120	1.4%	30.98 [1.81, 531.44]	2001				 →		
	Goertz B	24	28	16	40	6.5%	9.00 [2.62, 30.89]	2003						
	Maalej A-a	42	60	33	95	26.3%	4.38 [2.19, 8.79]	2005						
	Mosaad Y	64	77	39	150	15.4%	14.01 [6.96, 28.19]	2014			-	•		
	Tizaoui K	44	54	56	153	18.6%	7.62 [3.56, 16.32]	2014				_		
	Total (95% CI)		439		758	100.0%	7.48 [5.40, 10.36]				•			
	Total events	378		332			_							
	Heterogeneity: Chi ² = 7	.40, df = 5	(P = 0.	19); l² = 3	32%									
	Test for overall effect: Z	z = 12.09 (P < 0.0	0001)					0.01	0.1 1 xperimental]	1 1 Fourier (r			
								F	avours le	xperimentalj	Favours [c	controlj		
В		RA pati	ents	Contro	ols		Odds Ratio			Odds	Ratio			
_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI Year M-H, F			ed, 95% C			
	Garcia-Lozano	57	120	79	200	27.3%	1.39 [0.88, 2.19]	2001			╞━─			
	Lee CK	147	157	109	120	6.9%	1.48 [0.61, 3.62]	2001		-				
	Goertz B	24	62	16	40	10.5%	0.95 [0.42, 2.14]	2003			-			
	Maalej A-a	42	95	33	95	16.1%	1.49 [0.83, 2.67]	2005		-	+			
	Mosaad Y	64	128	39	150	15.7%	2.85 [1.72, 4.71]	2014						
	Tizaoui K	44	106	56	153	23.5%	1.23 [0.74, 2.04]	2014		-	-			
	Total (95% CI)		668		758	100.0%	1.56 [1.23, 1.96]				♦			
	Total events	378		332			- / -							
	Heterogeneity: Chi ² = 8		5 (P = 0		38%				H		<u> </u>			
	Test for overall effect: 2		•					F	0.01 avours [e	0.1 experimental]		0 100 control]		

Figure 3. Forest plot of the association between Taql variant and RA risk in homozygote model (TT vs. tt, A) and recessive model (TT vs. Tt+tt, B) in a fixed-effect model.

including 2359 patients and 2764 controls. Among which, two articles involved two study population [22, 28]. Four VDR polymorphisms were concerned (Taql, Bsml, Fokl, and Apal). Eight studies were the Caucasians, five were the Asians, and three were the Africans. The sample size ranged from 102 to 1152. **Table 1** listed the main characteristics of included studies in this meta-analysis. **Table 2** showed the distribution information of alleles and genotypes for each polymorphism.

Association between VDR polymorphisms and RA incidence

Table 3 displayed the results of this meta-analysis of the associations between VDR polymorphisms and Ra risk.

Taql polymorphism

Six studies included 668 cases and 758 controls. Between-study heterogeneity was calculated, and the fixed- or random- effect model was used. Overall, the T allele was shown to be higher in RA patients than that in controls (73.7% vs. 64.9%), indicting the T allele significantly increased the risk of RA compared to the t allele (T vs. t: OR=1.40, 95% CI=1.08-1.82, P=0.01) in a random-effect model as shown in **Figure 2**. This significant relationship was also found in homozygous model (TT vs. tt: OR=7.48, 95% CI=5.40-10.36, P<0.00001) and recessive model (TT vs. Tt+tt: OR=1.56, 95% CI=1.23-1.96, P=0.0002) in a fixed-effect model as shown in **Figure 3**. However, no association was

Int J Clin Exp Med 2017;10(2):4221-4233

Odds Ratio

M-H, Fixed, 95% CI

100

100

10

10

100

10

0.01

0.01

2003

2005

2006

2011

2012

2013

2013

0.01

0.1

Favours [experimental] Favours [control]

0.1

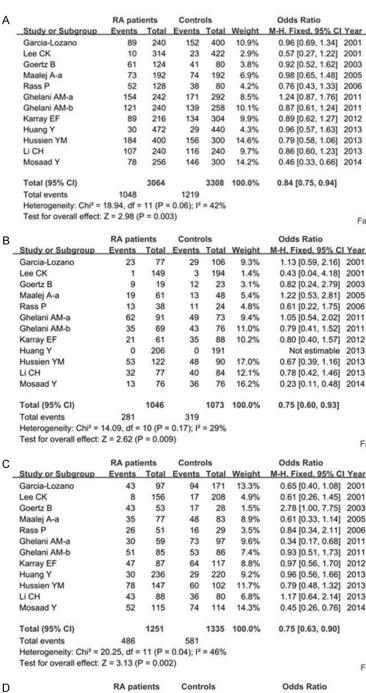
Favours [experimental] Favours [control]

Odds Ratio

M-H, Fixed, 95% CI

2001

2005


2006

0.1

Favours [experimental] Favours [control]

Odds Ratio

M-H. Fixed, 95% CI

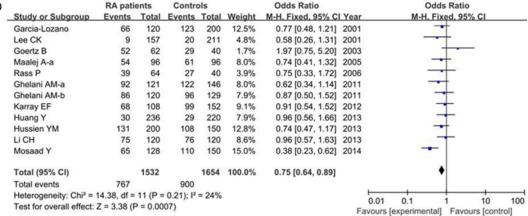


Figure 4. Forest plot of the association between Bsml variant and RA risk in four genetic models (A: B vs. b; B: BB vs. bb; C: Bb vs. bb; D: BB+Bb vs. bb) in a fixed-effect model.

found in heterozygous model (Tt vs. tt: OR=1.35, 95% CI=0.70-2.61, P=0.37) and dominant model (TT+Tt vs. tt: OR=1.60, 95% CI=0.86-2.98, P=0.14). Subgroup analysis by ethnicity showed that only TT genotype in heterozygous model was associated with RA susceptibility among Caucasians (TT vs. tt: OR=5.88, 95% CI=4.04-8.55, P<0.00001). Only one study was conducted in Asians and Africans, and the findings were negative and positive, respectively.

Bsml polymorphism

Total eleven studies (one study contained two study population) were screened out, involving 1532 patients and 1654 controls. Overall, our result found that Bsml polymorphism of VDR was associated with increased the risk of RA under four genetic models (B vs. b: OR=0.84, 95% CI=0.75-0.94, P=0.003; BB vs. bb: OR=0.75, 95% CI=0.60-0.93, P=0.009; Bb vs. bb: OR=0.75, 95% CI=0.63-0.90, P=0.002; BB+Bb vs. bb: OR=0.75, 95% CI=0.64-0.89, P=0.0007) in a fixed-effect model as shown in Figure 4. No significant association was found in recessive model (BB vs. Bb+bb: OR=0.86, 95% CI=0.62-1.20, P=0.36) in a random-effect model. Subgroup analysis by ethnicity showed that this polymorphism was associated with RA incidence only in allele model (B vs. b: OR=0.69, 95% CI=0.47-1.01, P=0.05) and recessive model (BB vs. Bb+bb: OR=0.65, 95% CI=0.47-0.89, P=0.008) among Africans. No significant association between Bsml polymorphism and RA among Asians and Caucasians was found.

Fokl polymorphism

Eight studies were identified (ten comparisons), containing 1556 cases and 1882 controls. We found the frequency of F allele was higher in cases than that in controls (62.6% vs. 56.4%). The results demonstrated a positive relationship between Fokl polymorphism of VDR and RA risk under all five genetic models (F vs. f: OR=1.24, 95% CI=1.05-1.47, P=0.01; FF vs ff: OR=1.45, 95% CI=1.02-2.07, P=0.04; Ff vs. ff: OR=1.38, 95% CI=1.13-1.67, P=0.001; FF+Ff vs. ff: OR=1.42, 95% CI=1.19-1.71, P=0.0001; FF vs. ff: Vs. Ff+ff: OR=1.28, 95% CI=1.01-1.64, P=0.05) as shown in **Figure 5**. Subgroup analy-

sis shown that four genetic models were associated with RA among Caucasians (F vs. f: OR=1.19, 95% CI=1.05-1.35, P=0.006; FF vs ff: OR=1.31, 95% CI=1.01-1.70, P=0.05; Ff vs. ff: OR=1.48, 95% CI=1.01-1.70, P=0.009; FF+Ff vs. ff: OR=1.37, 95% CI=1.13-1.68, P=0.001), three genetic models among Asians (F vs. f: OR=1.35, 95% CI=1.08-1.69, P=0.008; FF vs ff: OR=1.57, 95% CI=1.01-2.43, P=0.04; FF vs. Ff+ff: OR=1.47, 95% CI=1.09-1.99, P=0.01), no genetic models among Africans.

Apal polymorphism

Five studies were obtained, including 710 cases and 843 controls. Higher between-study heterogeneity was found and the randomeffect model was employed to calculate the pooled ORs. Finally, our results found no significant association between Apal polymorphism and RA risk under all genetic modes (A vs. a: OR=1.29, 95% CI=0.76-2.19, P=0.35; AA vs. aa: OR=1.50, 95% CI=0.76-2.19, P=0.35; AA vs. aa: OR=1.08, 95% CI=0.43-2.72, P=0.87; AA+Aa vs. aa: OR=1.22, 95% CI=0.46-3.23, P=0.69; AA vs. Aa+aa: OR=1.42, 95% CI=0.88-2.29, P=0.15). No relationship was found among Asians and Caucasians.

Publication bias

As shown in **Figure 6**, no obvious asymmetry was presented, indicating no possible bias was existed.

Discussion

We conducted this study to evaluate whether VDR polymorphisms (the 5' Fokl and 3' Bsml, Apal and Taql regions) were associated with RA risk. Totally, 14 studies were eligible for this study based on the selection criteria employed. Overall, our results found that the alleles of Taql, Bsml and Fokl polymorphisms were associated with RA susceptibility in total population. Subgroup analysis by ethnicity showed that Bsml variant among Africans, Fokl variant among Asians and Caucasians were significantly increased the risk of RA. No association was found between Apal variant and RA risk. Our results were not consistence with previous meta-analysis conducted by Lee et al. [37].

Α		RA patie		Contro			Odds Ratio	Odds Ratio	В		RA patier	nts	Contro	ls		Odds Ratio		Odds Ratio
-	Study or Subgroup						M-H. Random, 95% CI Year	M-H. Random, 95% Cl	-	Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	Year	M-H, Random, 95% CI
	Goertz B	91	124	51	80	5.5%	1.57 [0.86, 2.87] 2003			Goertz B	34	39	14	17	4.2%	1.46 [0.31, 6.94]	2003	
	Maalej A-a	133	200	108	200	9.0%	1.69 [1.13, 2.53] 2005			Maalej A-a	45	57	30	52	10.0%	2.75 [1.19, 6.38]	2005	
	Maalej A-b	136	200	124	200	8.8%	1.30 [0.86, 1.97] 2005			Maalej A-b	48	60	37	50	9.3%	1.41 [0.57, 3.44]		
	Ghelani AM-a	207	260	224	292	9.0%	1.19 [0.79, 1.78] 2011			Ghelani AM-a	86	95	88	98	8.7%	1.09 [0.42, 2.80]		
	Ghelani AM-b	154	264	176	288	10.6%	0.89 [0.63, 1.25] 2011	T		Ghelani AM-b	45	68	57	82	12.3%	0.86 [0.43, 1.71]		
	Hitchon CA	423	896	620		15.9%	1.14 [0.96, 1.35] 2012			Hitchon CA	90	205	156	397	19.0%	1.21 [0.86, 1.70]		T
	Karray EF	147	216	164	304	10.0%	1.82 [1.26, 2.62] 2012			Karray EF	49	59	46	80	10.4%	3.62 [1.61, 8.16]		
	Huang Y	301	472	243	440	12.8%	1.43 [1.09, 1.86] 2013	-		Huang Y	109	153	77	131	15.9%	1.74 [1.06, 2.85]		
	Mosaad Y	189	256	241	300	9.2%	0.69 [0.46, 1.03] 2014			Mosaad Y	69	77	93	95	4.1%	0.19 [0.04, 0.90]		
	Shukla S	166	224	171	250	9.1%	1.32 [0.89, 1.97] 2014			Shukla S	58	62	54	62	5.9%	2.15 [0.61, 7.54]	2014	
	Total (95% CI)		3112		3764	100.0%	1.24 [1.05, 1.47]	•		Total (95% CI)		875		1064	100.0%	1.45 [1.02, 2.07]		•
	Total events	1947		2122						Total events	633		652					
	Heterogeneity: Tau ² = (P = 0.01); 12 = 57%		0.01 0.1 1 10 100	1	Heterogeneity: Tau ² =			df = 9 (P	= 0.03	; I ^z = 50%	6		0.01 0.1 1 10 100
	Test for overall effect: 2	Z = 2.52 (P	= 0.01))			F	avours [experimental] Favours [control]	6	Test for overall effect:	Z = 2.05 (P	= 0.04)					Fav	vours [experimental] Favours [control]
С		RA pati		Cont			Odds Ratio	Odds Ratio	D		RA patie		Contr			Odds Ratio		Odds Ratio
-	Study or Subgroup	Events	Total			Weight	M-H, Fixed, 95% CI Year	M-H. Fixed. 95% Cl		Study or Subgroup		Total			Weight			M-H. Fixed. 95% Cl
	Goertz B	23	28	23			0.60 [0.13, 2.81] 2003			Goertz B	57	62	37	40	1.8%	0.92 [0.21, 4.10]		
	Maalej A-a	43	55	48	70	5.2%	1.64 [0.73, 3.71] 2005			Maalej A-a	88	100	78				2005	
	Maalej A-b	40	52	50			0.87 [0.36, 2.11] 2005			Maalej A-b	88	100	87	100	5.3%			_
	Ghelani AM-a	35	44	48	58	4.8%	0.81 [0.30, 2.20] 2011			Ghelani AM-a	121	130	136		4.5%	0.99 [0.39, 2.51]		
	Ghelani AM-b	64	87	62		9.3%	1.12 [0.58, 2.18] 2011			Ghelani AM-b	109	132	119			1.00 [0.53, 1.86]		
	Hitchon CA	243	358	308	549	44.3%	1.65 [1.25, 2.18] 2012			Hitchon CA	333	448	464	705	46.7%	1.50 [1.16, 1.96]		-
	Karray EF	49	59	72	106	5.0%	2.31 [1.05, 5.11] 2012			Karray EF	98	108	118		4.6%	2.82 [1.33, 6.00]		
	Huang Y	83	127	89	143	16.5%	1.14 [0.70, 1.88] 2013	-		Huang Y	192	236	166					T
	Mosaad Y	51	59	55	57	4.3%	0.23 [0.05, 1.14] 2014			Mosaad Y	120	128	148	150	4.3%	0.20 [0.04, 0.97]		-
	Shukla S	50	54	63	71	2.3%	1.59 [0.45, 5.58] 2014			Shukla S	108	112	117	125	2.0%	1.85 [0.54, 6.31]	2014	
	Total (95% CI)		923		1230	100.0%	1.38 [1.13, 1.67]	•		Total (95% CI)		1556		1882	100.0%	1.42 [1.19, 1.71]		•
	Total events	681		818	1					Total events	1314		1470					
	Heterogeneity: Chi2 = 1	12.45, df =	9 (P =	0.19); l2	= 28%			0.01 0.1 1 10 100		Heterogeneity: Chi ² =				= 30%				0.01 0.1 1 10 100
	Test for overall effect:	Z = 3.24 (P = 0.00	01)			Fa	vours [experimental] Favours [control]		Test for overall effect:	: Z = 3.81 (P	= 0.00	01)				Fav	ours [experimental] Favours [control]
F		RA patie	nts	Contro	ls		Odds Ratio	Odds Ratio										
	Study or Subgroup						M-H. Random, 95% CI Year	M-H. Random, 95% CI	-									
	Goertz B	34	62	14	40	5.9%	2.26 [0.99, 5.12] 2003											
	Maalej A-a	45	100	30	100	8.7%	1.91 [1.07, 3.41] 2005											
	Maalej A-b	48	100	37	100	9.0%	1.57 [0.89, 2.76] 2005											
	Ghelani AM-a	86	130	88	146	10.2%	1.29 [0.79, 2.11] 2011	+										
	Ghelani AM-b	45	132	57	144	10.2%	0.79 [0.48, 1.29] 2011	-				lidu	ro F	For	oct n	lot of the ac	coci	ation between Fokl
	Hitchon CA	90	448	156	705	13.9%	0.88 [0.66, 1.18] 2012	1				<u> </u>						
	Karray EF	49	108	46	152	9.8%	1.91 [1.15, 3.20] 2012				V	aria	nt a	nd F	RA ris	sk in five gen	etic	models (A: F vs. f;
	Huang Y	109	236	77	220	12.2%	1.59 [1.09, 2.32] 2013											
	Mosaad Y	69	128	93	150	10.4%	0.72 [0.44, 1.16] 2014	-			E	5: FF	- vs.	ir; C	: FT V	S. II; D: FF+F1	I VS.	ff; E: FF vs. Ff+ff).
	Shukla S	58	112	54	125	9.8%	1.41 [0.85, 2.36] 2014	-										
	Total (95% CI)		1556		1882	100.0%	1.28 [1.01, 1.64]	•										
	Total events	633		652														
	Heterogeneity: Tau ² = 0				= 0.00	7); l ² = 619	6	0.01 0.1 1 10 100										
	Test for overall effect: Z	Z = 2.00 (P	= 0.05)				Fi	vours [experimental] Favours [control]										

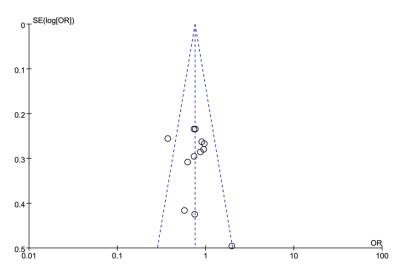


Figure 6. Funnel plot of publication bias between studies of Bsml variant in dominant model (BB+Bb vs. bb).

The VDR gene, an important regulator involving in the vitamin D pathway, belongs to the family of trans-acting transcriptional regulatory factors. It encodes the nuclear hormone receptor for vitamin D3 [38], and plays an important role in regulating cell differentiation, proliferation, and the induction of apoptosis [39]. The level of VDR mRNA was varied in different tumors, it was modestly down-regulated in colon, breast and lung tumors, but highly up-regulated in ovarian tumors [40]. VDR target gene expression is modulated by 1,25(OH)2D3. Studies have shown that 1,25(OH)2D3 regulated the expression level of VDR mRNA which in turn might be regulated by VDR microRNAs or epigenetic modulating drugs [41]. High VDR expression may be associated with a reduced risk of lethal cancer such as prostate cancer [42], and improved survival of patients with lung adenocarcinoma [43], suggesting that VDR is essential for vitamin D-mediated cancer prevention.

VDR polymorphisms may be altered gene expression or gene function through physiologic and pathologic phenotypes [44]. VDR polymorphisms and vitamin D status may influence osteoarthritis and intervertebral disc degeneration [45]. Vitamin D status could influence the impact of VDR variants on VDR function and associated disease risk. These polymorphisms were associated with numerous human diseases. Sarkissyan et al. demonstrated that Fokl polymorphism of VDR might influence the risk of colorectal cancer, particularly in African American cohorts [46]. Grant et al. firstly reported that VDR variants associated with ovarian cancer risk in African American women [47]. Oin et al. identified that Bsml variant of VDR gene might be a moderate risk factor in the development of ovarian cancer among the European population instead of North America or Asian population [48]. Kolahi et al. found that f allele and ff genotype of Fokl variant in VDR gene were associated with Behçet's disease among the Iranian Azari population [49]. However, Bsml B allele was

shown to have a weak effect in reducing cancer risk, especially of the skin [50]. The VDR polymorphism could improve the ability to predict Ca absorption under a variety of conditions and may influence dietary Ca requirements [51].

Among patients with RA, the results remain unclearly in different populations. Vitamin D serum concentration and Bsml variant of VDR gene might show some correlation with RA activity and progression [52]. Gómez-Vaquero et al. showed that the bb genotype of the Bsml polymorphism of the VDR gene was associated with less severe disease [53]. Of the included studies, Mosaad et al. proved that the Apal, Bsml and Taql polymorphisms might be a susceptibility risk factors for RA and the Ff genotype may be responsible for development of osteoporosis in RA Egyptian patients [33]. Hussien et al. showed that Bsml variant was an important candidate for osteoporosis in RA patients [31]. Hitchon et al. demonstrated that Fokl might contribute to the high prevalence of RA in north American natives populations [30]. While Shukla et al. the found that Fokl variant of VDR polymorphism was not associated with RA susceptibility [32]. Tizaoui et al. identified no association between Taql and Apal polymorphisms and RA pathogenesis [26].

Several limitations were presented in this meta-analysis. Firstly, the association (or cooccurrence) of alleles of adjacent polymorphisms with each other existed linkage disequilibrium, which may influence the role of each variant in RA risk [54]. Secondly, the number of included studies for subgroup analysis was little for a certain polymorphism. Thirdly, for Apal polymorphism, between-study heterogeneity was very high, which may affect the reliability. Lastly, RA involves a complex interplay among genotype, environmental triggers, and chance [55], other risk factors, such as sex, the stage of disease, and gene-environment interactions should be considered.

In conclusion, our results demonstrated that the alleles of Taql, Bsml and Fokl polymorphisms were associated with RA susceptibility in total population. Subgroup analysis by ethnicity showed that Bsml variant among Africans, Fokl variant among Asians and Caucasians were significantly increased the risk of RA. No relationship was found between Apal polymorphism and RA risk. These data may provide information that could lead to the development of biomarkers for RA risk.

Disclosure of conflict of interest

None.

Address correspondence to: Ailing Wu, Department of Anesthesiology, The First People's Hospital of Neijiang, Tuo Lane 31# Traffic Road, Neijiang 64-1000, Sichuan, China. Tel: 08322028899; Fax: 08322028899; E-mail: alwvip@163.com

References

- Uhlig T, Moe RH and Kvien TK. The burden of disease in rheumatoid arthritis. Pharmacoeconomics 2014; 32: 841-851.
- [2] Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423: 356-361.
- [3] Collins HP, Allbon P and Rahman N. A snapshot of arthritis in Australia 2010.
- [4] Kuller LH, Mackey RH, Walitt BT, Deane KD, Holers VM, Robinson WH, Sokolove J, Chang Y and Moreland LW. Rheumatoid arthritis in the Women's Health Initiative: methods and baseline evaluation. Am J Epidemiol 2014; 179: 917-926.
- [5] Widdifield J, Paterson JM, Bernatsky S, Tu K, Tomlinson G, Kuriya B, Thorne JC and Bombardier C. The epidemiology of rheumatoid arthritis in Ontario, Canada. Arthritis Rheumatol 2014; 66: 786-793.
- [6] Zlatković-Švenda MI, Stojanović RM, B Šipetić-Grujičić S, Guillemin F. Prevalence of rheuma-

toid arthritis in Serbia. Rheumatol Int 2014; 34: 649-658.

- [7] Slimani S and Ladjouze-Rezig A. Prevalence of rheumatoid arthritis in an urban population of Algeria: a prospective study. Rheumatology (Oxford) 2014; 53: 571-573.
- [8] Boyer JF, Gourraud PA, Cantagrel A, Davignon JL and Constantin A. Traditional cardiovascular risk factors in rheumatoid arthritis: a metaanalysis. Joint Bone Spine 2011; 78: 179-183.
- [9] Källberg H, Ding B, Padyukov L, Bengtsson C, Rönnelid J, Klareskog L, Alfredsson L; EIRA Study Group. Smoking is a major preventable risk factor for rheumatoid arthritis: estimations of risks after various exposures to cigarette smoke. Ann Rheum Dis 2011; 70: 508-511.
- [10] Klareskog L, Malmstrom V, Lundberg K, Padyukov L and Alfredsson L. Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis. Semin Immunol 2011; 23: 92-98.
- [11] Perricone C, Ceccarelli F and Valesini G. An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev 2011; 10: 599-608.
- [12] Feldman D, Krishnan AV, Swami S, Giovannucci E and Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14: 342-357.
- [13] Song GG, Bae SC and Lee YH. Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol 2012; 31: 1733-1739.
- [14] Cutolo M, Otsa K, Uprus M, Paolino S and Seriolo B. Vitamin D in rheumatoid arthritis. Autoimmun Rev 2007; 7: 59-64.
- [15] Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC and Jurutka PW. Molecular mechanisms of vitamin D action. Calcif Tissue Int 2013; 92: 77-98.
- [16] Evans SR, Houghton AM, Schumaker L, Brenner RV, Buras RR, Davoodi F, Nauta RJ and Shabahang M. Vitamin D receptor and growth inhibition by 1,25-dihydroxyvitamin D3 in human malignant melanoma cell lines. J Surg Res 1996; 61: 127-133.
- [17] Gandini S, Gnagnarella P, Serrano D, Pasquali E and Raimondi S. Vitamin D receptor polymorphisms and cancer. Adv Exp Med Biol 2014; 810: 69-105.
- [18] Gnagnarella P, Pasquali E, Serrano D, Raimondi S, Disalvatore D and Gandini S. Vitamin D receptor polymorphism Fokl and cancer risk: a comprehensive meta-analysis. Carcinogenesis 2014; 35: 1913-1919.
- [19] Nishijima S, Sugaya K, Naito A, Morozumi M, Hatano T and Ogawa Y. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol 2002; 167: 2188-2191.

- [20] Wang S, Wang X, Wu J, Lin Y, Chen H, Zheng X, Zhou C and Xie L. Association of vitamin D receptor gene polymorphism and calcium urolithiasis in the Chinese Han population. Urol Res 2012; 40: 277-284.
- [21] Vanessa O, Asani FF, Jeffery TJ, Saccone DS and Bornman L. Vitamin D receptor gene expression and function in a South African population: ethnicity, Vitamin D and Fokl. PLoS One 2013; 8: e67663.
- [22] Ghelani AM, Samanta A, Jones AC and Mastana SS. Association analysis of TNFR2, VDR, A2M, GSTT1, GSTM1, and ACE genes with rheumatoid arthritis in South Asians and Caucasians of East Midlands in the United Kingdom. Rheumatol Int 2011; 31: 1355-1361.
- [23] Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH and Luthra HS. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315-324.
- [24] Lee CK, Hong JS, Cho YS, Yoo B, Kim GS and Moon HB. Lack of relationship between vitamin D receptor polymorphism and bone erosion in rheumatoid arthritis. J Korean Med Sci 2001; 16: 188-192.
- [25] Karray EF, Ben Dhifallah I, Ben Abdelghani K, Ben Ghorbel I, Khanfir M, Houman H, Hamzaoui K and Zakraoui L. Associations of vitamin D receptor gene polymorphisms Fokl and Bsml with susceptibility to rheumatoid arthritis and Behçet's disease in Tunisians. Joint Bone Spine 2012; 79: 144-148.
- [26] Tizaoui K, Kaabachi W, Ouled Salah M, Ben Amor A, Hamzaoui A and Hamzaoui K. Vitamin D receptor Taql and Apal polymorphisms: a comparative study in patients with Behcet's disease and Rheumatoid arthritis in Tunisian population. Cell Immunol 2014; 290: 66-71.
- [27] Garcia-Lozano JR, Gonzalez-Escribano MF, Valenzuela A, Garcia A and Nunez-Roldan A. Association of vitamin D receptor genotypes with early onset rheumatoid arthritis. Eur J Immunogenet 2001; 28: 89-93.
- [28] Maalej A, Petit-Teixeira E, Michou L, Rebai A, Cornelis F and Ayadi H. Association study of VDR gene with rheumatoid arthritis in the French population. Genes Immun 2005; 6: 707-711.
- [29] Rass P, Pakozdi A, Lakatos P, Zilahi E, Sipka S, Szegedi G and Szekanecz Z. Vitamin D receptor gene polymorphism in rheumatoid arthritis and associated osteoporosis. Rheumatol Int 2006; 26: 964-971.
- [30] Hitchon CA, Sun Y, Robinson DB, Peschken CA, Bernstein CN, Siminovitch KA and El-Gabalawy
 HS. Vitamin D receptor polymorphism rs22-28570 (Fok1) is associated with rheumatoid

arthritis in North American natives. J Rheumatol 2012; 39: 1792-1797.

- [31] Hussien YM, Shehata A, Karam RA, Alzahrani SS, Magdy H and El-Shafey AM. Polymorphism in vitamin D receptor and osteoprotegerin genes in Egyptian rheumatoid arthritis patients with and without osteoporosis. Mol Biol Rep 2013; 40: 3675-3680.
- [32] Shukla S, Tripathi AK, Tripathi JK, Indurkar M and Chauhan UK. Role of PTPN22 and VDR gene polymorphisms in susceptibility to rheumatoid arthritis: a study from central India. Clinical, Cosmetic and Investigational Dentistry 2014; 6: 45-56.
- [33] Mosaad YM, Hammad EM, Fawzy Z, Abdal Aal IA, Youssef HM, ElSaid TO, Monir R and EL-Deek BS. Vitamin D receptor gene polymorphism as possible risk factor in rheumatoid arthritis and rheumatoid related osteoporosis. Hum Immunol 2014; 75: 452-461.
- [34] Goertz B, Fassbender WJ, Williams JC, Marzeion AM, Bretzel RG, Stracke H, Berliner MN. Vitamin D receptor genotypes are not associated with rheumatoid arthritis or biochemical parameters of bone turnover in German RA patients. Clin Exp Rheumatol 2003; 21: 333-339.
- [35] Li C, Wang Y, Yin H and Yin S. The association between vitamin D, vitamin D receptor polymorphism and rheumatoid arthritis. Chinese Journal of Rheumatology 2013; 17: 164-168.
- [36] Huang Y. Associations of vitamin D receptor gene polymorphisms with RA in the Han population of human in China. Zhong Nan Da Xue Xue 2013.
- [37] Lee YH, Bae SC, Choi SJ, Ji JD and Song GG. Associations between vitamin D receptor polymorphisms and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 2011; 38: 3643-3651.
- [38] Poulin ML, Meyer A, Gonzalez G, Bi K and Yan L. Methylation, SNP and expression analysis of the Vitamin D receptor (VDR) gene in different tumor tissues. Cancer Res 2013; 73: 4242-4242.
- [39] Thomas MG, Tebbutt S and Williamson RC. Vitamin D and its metabolites inhibit cell proliferation in human rectal mucosa and a colon cancer cell line. Gut 1992; 33: 1660-1663.
- [40] Anderson MG, Nakane M, Ruan X, Kroeger PE and Wu-Wong JR. Expression of VDR and CY-P24A1 mRNA in human tumors. Cancer Chemother Pharmacol 2006; 57: 234-240.
- [41] Essa S, Reichrath S, Mahlknecht U, Montenarh M, Vogt T and Reichrath J. Signature of VDR miRNAs and epigenetic modulation of vitamin D signaling in melanoma cell lines. Anticancer Res 2012; 32: 383-389.

- [42] Hendrickson WK, Flavin R, Kasperzyk JL, Fiorentino M, Fang F, Lis R, Fiore C, Penney KL, Ma J, Kantoff PW, Stampfer MJ, Loda M, Mucci LA and Giovannucci E. Vitamin D receptor protein expression in tumor tissue and prostate cancer progression. J Clin Oncol 2011; 29: 2378-2385.
- [43] Kim SH, Chen G, King AN, Jeon CK, Christensen PJ, Zhao L, Simpson RU, Thomas DG, Giordano TJ, Brenner DE, Hollis B, Beer DG and Ramnath N. Characterization of vitamin D receptor (VDR) in lung adenocarcinoma. Lung Cancer 2012; 77: 265-271.
- [44] Uitterlinden AG, Fang Y, van Meurs JB, Pols HA and van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143-156.
- [45] Colombini A, Cauci S, Lombardi G, Lanteri P, Croiset S, Brayda-Bruno M and Banfi G. Relationship between vitamin D receptor gene (VDR) polymorphisms, vitamin D status, osteoarthritis and intervertebral disc degeneration. J Steroid Biochem Mol Biol 2013; 138: 24-40.
- [46] Sarkissyan M, Wu Y, Chen Z, Mishra D, Sarkissyan S, Giannikopoulos I and Vadgama JV. Vitamin D receptor Fok1 gene polymorphisms may be associated with CRC among African American and Hispanic participants. Cancer Research 2014; 74: 1278-1278.
- [47] Grant DJ, Hoyo C, Akushevich L, Iversen ES, Whitaker R, Marks J, Berchuck A and Schildkraut JM. Vitamin D receptor (VDR) polymorphisms and risk of ovarian cancer in Caucasian and African American women. Gynecol Oncol 2013; 129: 173-178.

- [48] Qin X, Lu Y, Qin A, Chen Z, Peng Q, Deng Y, Xie L, Wang J, Li R, Zeng J, Li S, Zhao J. Vitamin D receptor Bsml polymorphism and ovarian cancer risk: a meta-analysis. Int J Gynecol Cancer 2013; 23: 1178-1183.
- [49] Kolahi S, Khabbazi A, Khodadadi H, Estiar M, Hajialiloo M, Emrahi L and Sakhinia E. Vitamin D receptor gene polymorphisms in Iranian Azary patients with Behcet's disease. Scand J Rheumatol 2015; 44: 163-7.
- [50] Raimondi S, Pasquali E, Gnagnarella P, Serrano D, Disalvatore D, Johansson HA and Gandini S. Bsml polymorphism of vitamin D receptor gene and cancer risk: a comprehensive metaanalysis. Mutat Res 2014; 769: 17-34.
- [51] Chang B, Sukumar D, Schlussel Y, Gordon D and Shapses S. Vitamin D receptor polymorphisms predict greater decrease in calcium absorption (373.1). The FASEB Journal 2014; 28: 373.371.
- [52] Milchert M. In Annales Academiae Medicae Stetinensis. 45-56.
- [53] Gómez-Vaquero C, Fiter J, Enjuanes A, Nogués X, Díez-Pérez A and Nolla JM. Influence of the Bsml polymorphism of the vitamin D receptor gene on rheumatoid arthritis clinical activity. J Rheumatol 2007; 34: 1823-1826.
- [54] Wall JD and Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 2003; 4: 587-597.
- [55] McInnes IB and Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365: 2205-2219.