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Abstract

Purpose—Studies of vitamin D pathway genetic variants in relation to cancer risk have been
inconsistent. We examined associations between vitamin D-related genetic polymorphisms,
plasma 25-hydroxyvitamin D [25(OH)D], and breast cancer risk.

Methods—In a population-based case-control study of 967 incident breast cancer cases and 993
controls, we genotyped 25 polymorphisms encoding the vitamin D receptor (VDR) gene, la-
hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1), and vitamin D binding protein (GC) and
measured plasma 25(OH)D. We used multivariable logistic regression to estimate adjusted odds
ratios (ORs) and 95% confidence intervals (CI).

Results—Among CYP24A1 polymorphisms, rs6068816 was associated with a 72% reduction in
breast cancer risk (TT vs. CC, OR: 0.28, 95%CI: 0.10-0.76; ptreng=0.01), but for rs13038432, the
46% decrease included the null value (GG vs. AA, OR: 0.54, 95%CI: 0.17-1.67; Ptreng=0.03).
Increased risk that included the null value was noted for CYP24A1 rs3787557 (CC vs. TT, OR:
1.34, 95% ClI: 0.92-1.89). The VDR polymorphism, Taql (rs731236), was associated with a 26%
risk reduction (TT vs. CC, OR: 0.74, 95%CI: 0.56-0.98; ptreng=0.01). For other polymorphisms,
ORs were weak and included the null value. The inverse association for plasma 25(OH)D with
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breast cancer was more pronounced (OR: 0.43, 95%CIl: 0.27-0.68) among women with the
common allele for CYP24A, rs927650 (p for interaction on a multiplicative scale=0.01).

Conclusion—Breast cancer risk may be associated with specific vitamin D-related
polymorphisms, particularly CYP24A1. Genetic variation in the vitamin D pathway should be
considered when designing potential intervention strategies with vitamin D supplementation.

Keywords
breast cancer; vitamin D related gene polymorphisms; plasma 25-hydroxyvitamin D; CYP24A1

Introduction

Vitamin D in the body comes from two main sources, endogenous production from sun
exposure (accounting for up to 90%) or ingestion of food or supplements [1]. Epidemiologic
studies have consistently reported reduced breast cancer incidence and mortality associated
with greater exposure to sunlight and ultraviolet B (UVB) irradiation [2-11]. However,
results for studies evaluating dietary and supplemental intake of vitamin D and breast cancer
risk are mixed [12-18]. Circulating 25-hydroxyvitamin D [25(OH)D] is an objective
measure of vitamin D status from sunlight exposure, dietary, or supplement intake. Two
recent meta-analysis of prospective studies showed overall 25(OH)D blood levels are
associated with reduced breast cancer risk [19,20]. However, three recent prospective
studies observed no association between 25(OH)D levels and breast cancer risk [21-23] and
only one recent prospective study found an inverse association among whites, but not other
ethnic groups [24].

Several enzymatic steps are involved in vitamin D metabolism. Genetic variants involved in
vitamin D metabolism potentially modify cancer risk [25]. UVB exposure converts 7-
dehydrocholesterol into vitamin D3 (cholecalciferol). Metabolism is initiated when vitamin
D3 is hydroxylated in the liver to 25(OH)D through a reaction catalyzed by 25-hydroxylase
enzyme. If calcium levels drop, parathyroid hormone (PTH) is released and activates la-
hydroxylase (encoded by CYP27B1) that hydroxylates 25(OH)D to the active metabolite,
1a,25-dihydroxyvitamin D [1,25(0H),D]. 1,25(0OH),D binds to the vitamin D receptor
(VDR), a ligand-dependent transcription factor, that regulates transcription of a number of
genes involved in cell proliferation, differentiation, apoptosis, growth factor signaling, and
immunomodulation [25,26]. Both 25(OH)D and 1,25(0OH),D can also be degraded into less
active forms by 24-hydroxylase (encoded by CYP24A1). The group-specific component
(GC) gene encodes the vitamin D-binding protein (DBP), which facilitates the transport of
vitamin D metabolites.

Vitamin D pathway genetic polymorphisms may influence breast cancer risk. Most well-
studied are vitamin D receptor (VDR) polymorphisms. A comprehensive review found no
evidence of a consistent association between VDR polymorphisms and breast cancer risk
[27]. Studies of single nucleotide polymorphisms (SNPs) in GC found no significant
association with breast cancer risk [25,28,29]. CYP27B1 and CYP24AL1 are involved in the
activation and degradation of 25(OH)D and 1,25(0OH),D. Only five studies examined the
association between SNPs on these genes and breast cancer risk [25,28-31]. A review
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suggests that some SNPs on these genes may be associated with breast cancer risk, but
results are inconclusive [32].

Variations in these genes may influence vitamin D synthesis and levels of circulating
vitamin D. Potential interactions between genotypes and vitamin D levels have not been
adequately addressed in epidemiologic studies. Only three previous studies examined
interactions between circulating 25(0OH)D and VDR gene polymorphisms, specifically those
detected by digestion with Bsml (rs1544410) and Fokl (rs10735810) [33-35]. Effect
modification of GC polymorphisms, CYP27B1 and CYP24A1, may also be important to
breast cancer development. Less is known about these vitamin D-related genes and their
association with breast cancer risk and interaction with circulating 25(OH)D.

Among participants in a population-based case-control study, the Long Island Breast Cancer
Study Project (LIBCSP), we previously observed an inverse association between circulating
25(0OH)D and breast cancer risk [36]. Our objective here was to examine whether
polymorphisms in genes involved in the vitamin D pathway may modify the association
between 25(OH)D and breast cancer in an effort to identify susceptible subgroups of the
population who may be at highest risk or who may benefit most from vitamin D exposure.

Materials and Methods

This study utilizes the LIBCSP, a population-based case-control study conducted on Long
Island, New York [37]. Full details have been reported previously [37]. Institutional Review
Board approval was obtained from all participating institutions.

Study Population

Breast cancer cases were women 20 years of age or older, residents of Nassau or Suffolk
County, English-speaking, and newly diagnosed with in situ or invasive breast cancer
between August 1, 1996 and July 31, 1997. Eligible cases were identified through daily or
weekly contact with the 28 hospitals in these two counties, and three hospitals in New York
City that treat Long Island residents diagnosed with breast cancer. Controls were women
without breast cancer identified by random digit dialing for women under 65 years of age
and through Health Care Finance Administration (now the Center for Medicare and
Medicaid Services) rosters for women 65 years or older. Controls were frequency matched
to the expected age distribution of the cases by 5-year age groups.

Trained interviewers administered the structured two-hour case-control questionnaire where
respondents were asked about breast cancer risk factors and demographic characteristics
[37]. In-person interviews were completed by 82.1% (n=1,508) of the eligible cases and
62.7% (1,556) of the eligible controls. Respondents ranged in age from 20 to 98 years, were
primarily postmenopausal (67%), and 93% self-reported as white, 5% black, and 2% other,
which is consistent with the underlying racial distribution of the study area at the time of
data collection [37].

Medical records of cases were abstracted to obtain information on tumor characteristics of
the first primary breast cancer. Non-fasting blood samples were obtained at the time of the
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interview from 73.1% of the case and 73.3% of the control respondents (n=1102 and 1141,
respectively). Samples were collected prior to chemotherapy for 77.2% (851/1102) of the
case respondents [37]. Plasma 25(OH)D measurements are absent in 6.9% of cases and
5.8% of controls, due to insufficient sample to complete the assay [36].

We limited the study reported here to white women due to population stratification
concerns, and thus our final sample size was 967 breast cancer cases and 993 controls.
LIBCSP case and control participants who reported their race as white and with both DNA
and serum available for this study had a mean age of 58.6 and 56.5 years, respectively [36].
Cases more often reported nulliplarity, a first-degree family history of breast cancer and
history of benign breast disease. Season of blood draw was also slightly different between
cases and controls. Cases had higher percentage of women with blood drawn in October to
December as compared to controls (31.5% vs. 27.8%, respectively). However, controls had
higher percentage of blood drawn in January to March as compared to cases (24.5% vs.
18.2%, respectively). For the remaining months, April to September the frequency of blood
draws was similar between cases and controls.

Measurement of Plasma 25(OH)D

Quantification of 25(OH)D in plasma was done via Diasorin radioimmunoassay (RIA)
method. Prior to measurement, plasma samples were stored at —80°C. Samples were
analyzed in batches between September and December 2007 using eight lots of the assay, as
described previously [36]. Quality controls were utilized to assess inter-assay accuracy and
precision. During each run quality control (QC) samples (n=5) were run together with the
study samples. QC samples (n=2; 17.3 and 50.4 ng/mL) provided by Diasorin, pooled
plasma sample (n=1; 23.6 ng/mL) and commercially available external QC samples (n=2;
63.9 and 107.9 ng/mL). The inter-assay precision, determined for each QC from n=56 runs
was 14.2, 15.7, 16.4, 14.2 and 5.7%, respectively. In addition, the lab successfully ran
external proficiency samples from the UK-based vitamin D proficiency program DEQAS.
Measurement of plasma 25(OH)D were performed in the laboratory of Dr. Serge Cremers at
Columbia University Medical Center (CUMC).

Genotyping Assays

We selected 35 SNPs for genotyping with known or suspected impact on the vitamin D
pathway or that had been associated with breast cancer in previous studies [27,32]. They
included 20 SNPs in VDR: rs6823, Bsml (rs1544410), rs2071358, rs2107301, rs2239181,
rs2239182, rs2408876, rs2544038, rs3782905, rs4073729, rs4760674, rs7299460, Taq|
(rs731236), rs739837, rs7974708, Apal (rs7975232), Fokl (rs10735810), rs10875694,
rs11168287, and rs11168314; 12 SNPs from 24-hydroxylase (CYP24A1): rs927650,
rs2181874, rs2296241, rs2244719, rs2245153, rs2585428, rs2762939, rs3787557,
rs4809960, rs6022999, rs6068816, and rs13038432; two from the vitamin D-binding protein
(GC): rs4588 and rs7041; and one from la-hydroxylase (CYP27B1): rs4646537.

As previously described, genomic DNA was extracted from mononuclear cells in whole
blood separated by Ficoll (Sigma Chemical Co., St. Louis, MO) and washed twice with
phosphate-buffered saline [37]. Pelleted cells were frozen at —80°C until DNA isolation by
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standard phenol and chloroform/isoamyl alcohol extraction. Master DNA 96-well plates
containing 10 ng/ul were used to make replica plates. Genotyping of the SNPs was
performed by the fluorogenic 5’-nuclease or TagMan assay, using the TagMan Core Reagent
Kit (Applied Biosystems, Foster City, California). Polymerase chain reactions were carried
out by using standard conditions recommended by the manufacturer. The fluorescence
profile of each well was measured in an ABI 7500HT Sequence Detection System and the
results analyzed with Sequence Detection Software (Applied Biosystems). Controls for
genotype at each locus and two no DNA controls were included on each plate. Any samples
that were outside the parameters defined by the controls were identified as non-informative
and were retested. Four SNPs VDR (rs2239182, rs2239181), CYP24A1 (rs6068816) had
concordance >98%. Most other SNPs fell between 95-98%, except four SNPs with
concordance below 95% (rs2107301 and rs6823 had 94%, rs4760674 91% and rs4073729
85% concordance) [38]. All SNPS had a call rate of 95% or better, except four: VDR
(rs1544410: 89.1%; rs3782905 93.0%), CYP24A1 (rs2762939: 93.3%), and GC (rs7041;
94.6%). Laboratory personnel were blinded to case/control status. Genotyping assays were
performed in the laboratory of Dr. Regina Santella at CUMC.

Statistical Methods

For each of the 35 polymorphisms assayed, white subjects were divided into three groups
based on genotype. We tested for deviation from Hardy-Weinberg equilibrium (HWE)
among controls for each polymorphism using observed genotype frequencies and a y? test
with one degree of freedom [39]. VDR (Fokl, rs10735810) had significant departure from
HWE and CYP27B1 (rs464537) had a minor allele frequency (MAF) of <5%); thus, both
SNPs were excluded. We also excluded the four SNPs with concordance below 95%. The
following ten SNPs were in linkage disequilibrium: VDR Apal (rs7975232) and VDR
rs739837; VDR Bsml (rs1544410) and VDR Tagl (rs731236); VDR rs3782905 and VDR
rs7974708; CYP24A1 rs2585428 and CYP24A1 rs2296241; CYP24A1 rs4809960 and
CYP24A1 rs2245153. Given the relative importance of Bsml and Tag| in other published
literature, we elected to include these SNPs. We used Apal instead of rs739837 as previous
studies have suggested an association between Apal and breast cancer, whereas rs739837
has only been associated with fair skin and melanoma risk [40,41]. We selected rs3782905
and rs4809960 instead of rs7974708 and rs2245153, respectively; due to previous studies
suggesting an association with prostate cancer prognosis [42], whereas to our knowledge
rs7974708 has not been investigated in relation to cancer. For the CYP24A1 SNPs, we
selected rs2585428, instead of rs2296241, because a prior study found no association
between breast cancer risk and rs2296241 [43]. Thus, the final number of SNPS included in
our statistical analyses was 25.

Quantile regression was used to compare plasma 25(OH)D concentrations across all three
genotypes and comparing a dominant model among controls [44]. We used log transformed
plasma 25(0OH)D concentrations, to normalize the distribution of 25(OH)D. To obtain
plasma 25(0OH)D concentrations that are adjusted for seasonal trend, we estimated the trend
using a sine function among the controls, then we subtracted the estimated trend from
measured plasma 25(0OH)D. We used these adjusted values for all analyses that incorporated
25(0OH)D.
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We examined the association between genotype and breast cancer risk by unconditional
logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (Cls) [45].
The genotype that was homozygous for the common allele was used as the referent category.

We conducted polytomous logistic regression for the association between genotype and
subgroups of breast cancer defined by tumor characteristics [45]. ORs were estimated with
cases classified by stage of disease (in situ vs. invasive) and hormone receptor status
(estrogen receptor (ER)+ or progesterone receptor (PR)+ vs. ER-/PR- or ER+/PR+ vs. ER
—/PR-). The ratio of the ORs (ROR) was used as an indicator of etiological heterogeneity
across disease stage and hormone receptor subtype [46].

Effect modification of plasma 25(OH)D across level of genotype was evaluated on a
multiplicative scale comparing the likelihood ratio tests of logistic regression models with
and without interaction terms [45]. Plasma 25(OH)D was divided into two categories (<19.1
and =19.1 ng/mL), based on the lowest quartile of 25(OH)D vs. all above. Multiplicative
interactions were assessed using indicator variables, where low plasma 25(OH)D (<19.1
ng/mL) was the referent category in a dominant genetic model, stratified by homozygous
common allele and heterozygous or homozygous minor allele.

We identified potential confounders using a directed acyclic graph (DAG): first degree
family history of breast cancer, body mass index (BMI), oral contraceptive use, alcohol
consumption, smoking, hormone replacement use, breastfeeding, and mammogram use.
Potential confounders were included in the final models as a confounder if their inclusion
significantly changed the log-likelihood of the model. Only two of these variables (family
history of breast cancer and mammogram use) confounded the models. Therefore, all final
statistical models include adjustment for age, first-degree family history of breast cancer,
and mammogram use.

To aid in the interpretation of our results, we accounted for multiple comparisons using the
Bonferroni correction [47]. Given we examined 25 SNPs, the corrected p-value denoting a
significant association was p<0.002. All statistical analyses were conducted using SAS
version 9.2 (SAS Institute, Cary, NC).

Among white control women with DNA and serum samples available for this study, we
found a difference in median plasma 25(OH)D concentrations across genotypes for several
polymorphisms, as shown in Table 1. For almost half of control participants (44.9%),
regardless of genotype, the geometric mean of plasma 25(OH)D was <30 ng/mL. For two
VDR SNPs (rs2071358, rs2408876), we observed different geometric mean 25(OH)D levels
across genotype. For the CYP27AL (rs13038432), it appears that geometric mean plasma
25(0OH)D levels are lower among those with the GG genotype than those with AA genotype.
For both GC polymorphisms (rs4588, rs7041), the lowest median plasma 25(OH)D was
among those with homozygous minor alleles (p=0.001 and p=0.001, respectively).

As shown in Table 2, CYP24A1 rs6068816 was associated with a 72% reduction in breast
cancer risk (TT vs. CC, OR: 0.28, 95% CI: 0.10-0.76, pireng=0.01). Increased breast cancer
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risk was noted for CYP24A1 rs6022999, rs2181874 and rs3787557, however the confidence
intervals included the null value (GG vs. AA, OR: 1.35 95% ClI: 0.95-1.90, ptreng=0.11; AA
vs. GG, OR: 1.37, 95% CI: 0.96-1.95, ptreng=0.11; CC vs. TT, OR: 1.34, 95% CI: 0.92—
1.89, pireng=0.49, respectively). For VDR polymorphisms, Tagl (rs731236), Bsml
(rs1544410) and rs2544038 showed a decrease in odds of breast cancer (TT vs. CC, OR:
0.74, 95% CI: 0.56-0.98, pireng=0.01; GG vs. AA, OR: 0.74, 95% ClI: 0.55-1.00,
Ptreng=0.03; TT vs. CC, OR: 0.74, 95% ClI: 0.57-0.97, pteng=0.03, respectively). For the
remaining polymorphisms, associations with breast cancer were weak and confidence
intervals included the null value. Once we adjusted for multiple comparisons, none of the
SNP-breast cancer risk p-values were <0.002, the threshold determined using the Bonferroni
correction.

As presented in Table 3, we observed little or no heterogeneity in the association between
vitamin-D related SNPs and breast cancer across tumor characteristics of the first primary
breast cancer, with a few exceptions. For VDR rs2408876, there was a 42% decreased breast
cancer risk among patients either ER+ or PR+ tumors as compared to women with ER-/PR-
tumors (ROR: 0.59, 95% CI: 0.36-0.98). We also examined heterogeneity between ER+/PR
- and ER—-/PR- tumors and found similar variations in the RORs, with attenuation of most
of the ORs (Supplemental Table 1). Other SNPs showed apparent variability across tumor
subtypes, but the confidence intervals for the measure of heterogeneity included the null
value.

We noted effect modification on a multiplicative scale (p<0.05) for CYP24A1 polymorphism
rs927650. Women homozygous for the common allele of CYP24A1 rs927650 who had
plasma 25(0OH)D of = 19.1 ng/mL had reduced breast cancer risk compared to women with
plasma 25(0OH)D <19.1 ng/mL (OR: 0.43, 95% CI: 0.27-0.68; Supplemental Table 2). With
adjustment for multiple comparisons, none of the interaction p-values were below the
Bonferroni-determined threshold. Our findings however, were based on small numbers of
women and therefore should be interpreted with caution. In analyses restricted to
postmenopausal women the interaction for CYP24A1 (rs927650) was no longer significant
(Supplemental Table 3).

Discussion

In this population-based case-control study, we observed reduced risks for breast cancer in
association with select biologically plausible vitamin D-related gene polymorphisms,
particularly CYP24A1. Specifically, we observed potential 72% and 46% reductions for
breast cancer risk in association with the homozygous minor allele genotype for CYP24A1
polymorphism rs6068816 and rs13038432. After accounting for multiple comparisons,
however, we found no interactions between CYP24A1 and GC polymorphisms and plasma
25(0OH)D. To our knowledge, this is the first study to examine effect modification of breast
cancer risk by plasma 25(OH)D among vitamin D-related gene polymorphisms other than
VDR

CYP24ALl is located on chromosome 20 (Figure 1b) and plays an important role in vitamin D
metabolism, specifically regulating the level of active vitamin D [27]. CYP24A1 is amplified
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in breast tumors, which may nullify growth control [48]. Two previous studies found no
association between CYP24A1 polymorphisms (rs2296241, rs2181874, rs4809958 and
rs601305) and breast cancer risk [25,28] and another study found an increased risk with one
polymorphism (rs6091822) and a decreased risk with two other CYP24A1 polymorphisms
(rs8124792 and rs6097809) [29]. We found decreased breast cancer risk for two CYP24A1
polymorphisms that were not examined in these previous studies, rs13038432 and
rs6068816.

In our study, there was a potential interaction between CYP24A1 polymorphism rs927650
and plasma 25(0OH)D; breast cancer risk was reduced among women with the homozygous
common allele with plasma 25(OH)D 219.1 ng/mL compared to those with 25(OH)D <19.1
ng/mL. A recent genome-wide association study (GWAS) demonstrated that variation in
CYP24A1 was related to circulating levels of 25(OH)D [49]. CYP24Al encodes 24-
hydroxylase, which degrades 1,25(0OH),D, reducing the growth control of 1,25(0OH),D and
potentially increasing breast cancer risk among women with certain CYP24A1
polymorphisms [27]. We did not test for rs6013897, which has been highlighted in a recent
GWAS study [49] as associated with vitamin D insufficiency. To our knowledge no
previous publication has examined linkage disequilibrium between rs6013897 and any
CYP24A1 polymorphisms. Our findings appear to be compatible with the known function of
CYP24A1, which suggests that the association with breast cancer may be modified through
25(0OH)D.

We also found potential breast cancer risk reductions for a number of VDR polymorphisms,
including Bsml (rs1544410), Tagl (rs731236), and rs2544038. It is interesting to note, all the
VDR polymorphisms associated with decreased breast cancer risk or plasma 25(OH)D in our
study were closer to the 3’ end of the promoter region and part of block B (Figure 1a) [50].
The functionality of these VDR polymorphisms is not completely understood [51]. The Tag|l
(rs731236) polymorphism is on block B and part of the ligand-binding domain [27]. Our
findings of a reduced risk comparing CC vs. TT in Tagl are consistent with the magnitude of
effect observed in previous studies [52,35]. However, a few other studies have found an
increased risk or no association, but these studies were composed of slightly different
populations, either premenopausal women only or women in other countries with differing
sun exposure [53,54]. Our findings of a reduced risk with Bsml are consistent with one
previous study among white women [17], and two other studies [55,56] conducted within
populations of different racial backgrounds. However, other studies conducted within white
populations showed an increased breast cancer risk with Bsml [57,58,33,34,59]. We know of
only one study that also assessed rs2544038, which found a slightly increased breast cancer
risk with the CC vs. TT genotype [60].

Among VDR polymorphisms associated with increased risk, one SNP has not been
previously published in relation to breast cancer, rs2239182. Our study showed Apal was
associated with an increased breast cancer risk, which is consistent with three previous
studies [53,61,62] and inconsistent with three others [56,52,25]. It is unclear if Apal is
associated with increased breast cancer risk or if these are chance findings.
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Within the vitamin D-binding protein encoded by GC, we examined two relatively common
SNPs, rs7041 and rs4588 (Figure 1c). Previous breast cancer studies have found varied
results [25,28]. In our population, we observed weak increases in breast cancer risk, with
confidence intervals that included the null value, for both of these polymorphisms. Our
breast cancer risk estimates were similar for rs7041 to two recent studies [25,28] and similar
in rs4588 to one of these studies [25]. However, two other studies found a decreased breast
cancer risk for rs7041 [63,64], only one examined rs4588 and also found an inverse
association [63]. For both rs7041 and rs4588, we observed some variation in plasma
25(0OH)D levels across genotype. Overall, our findings are in agreement with a recent study
that showed GC variation is associated with 25(OH)D concentrations [65]. However, a
GWAS study showed only GC rs2282679 was associated with vitamin D insufficiency, and
thus variation in 25(OH)D across genotype may be influenced by other mechanisms [49].

These results support the concept that breast carcinogenesis may be influenced by the
vitamin D axis, including the interaction between the different components of vitamin D,
which includes circulating vitamin D, the VDR and the vitamin D-binding protein [66]. Few
previous studies have assessed interactions between circulating 25(OH)D and vitamin D
polymorphisms on breast cancer risk [33-35,63].

We acknowledge the following limitations of our study. First, we used a biologically based
approach for SNP selection [67-69], however, with adjustments for multiple comparisons,
none of the associations we observed met the conservative Bonferroni-threshold for
significance. Thus, our results could be due to chance. Second, given that blood was
collected near diagnosis and that 25(OH)D has a relatively short half-life of approximately
2-3 weeks [70], circulating vitamin D levels at the time of diagnosis may not reflect the
etiologically relevant window timeframe. Third, we limited our analyses to white women,
given genotypes in VDR have been shown to vary by race and ethnicity [71]. This may limit
generalizability of our findings; however, our homogenous population is also a study
strength, because there is less genetic variability. Fourth, our results are based on a small
number of case subjects with the homozygous minor allele. It is unclear if our findings
would be replicated in a larger study with more women with the homozygous minor alleles
in CYP24A1 gene.

Our study improves upon previous studies in a number of different ways. First, we examined
a number of biologically plausible polymorphisms, not just those on VDR. Our results show
that other vitamin D-related genes — particularly CYP24AL1 - may also be important in
understanding the relationship between vitamin D and breast cancer risk. Second, our study
is based on incident breast cancer cases. Vitamin D levels can also be affected by treatment
[72-74] and changes in lifestyles behaviors after diagnosis with breast cancer. Blood
samples in our population were collected prior to treatment with chemotherapy in 70% of
the cases. Third, our study was population-based, reducing the likelihood of unquantified
selection biases that are inherent in using select populations. As previously reported [37],
LIBCSP participants for whom blood samples were available were more likely to be
younger, report their race as white, to ever use alcohol, ever used hormone replacement,
breast fed for more than 6 months, ever had a mammogram, and less likely to be past
smokers. However, all statistical analyses included the frequency matching factor age, were

Cancer Causes Control. Author manuscript; available in PMC 2016 February 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Reimers et al.

Page 10

limited to whites only, and adjusted for ever having a mammogram, which may have helped
to limit some of the potential selection bias associated with these differences. In addition,
alcohol use, hormone replacement use, breastfeeding, and smoking were not confounders in
our analyses. Further, our incidence density sampling approach improves our ability for
estimating rate ratios, which enhances interpretation of our findings.

In conclusion, in our population-based study, breast cancer risk was associated with specific
vitamin D-related SNPs, supporting the biologic plausibility of a relationship between
vitamin D and breast cancer risk. Prospective studies evaluating 25(OH)D and breast cancer
risk have had mixed results, some studies found 25(OH)D decreases breast cancer risk
[19,20,24], whereas others reported no association [21-23]. We observed that the inverse
association with vitamin D may be stronger among women with polymorphisms within
CYP24AL. Genetic variation in the vitamin D pathway, specifically in CYP24A1, is
potentially important to breast cancer risk, which should be considered when designing
potential intervention strategies with vitamin D supplementation.
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