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Recommendations on limitation of summer sunlight exposure to prevent skin cancer may conflict with
requirements to protect bone health through adequate vitamin D levels, the principal source being UVB
in summer sunlight. We determined whether sufficient (X20 ng ml�1) and proposed optimal (X32 ng ml�1)
25(OH)D levels are attained by following UK guidance advising casual short exposures to UVB in summer
sunlight, and performed the study under known conditions to enhance the specificity of future recommenda-
tions. During wintertime, when ambient UVB is negligible, 120 white Caucasians, aged 20–60 years, from
Greater Manchester, UK (53.51N) received a simulated summer’s sunlight exposures, specifically 1.3 standard
erythemal dose, three times weekly for 6 weeks, while wearing T-shirt and shorts. The baseline winter data
predict that 5% (confidence interval (CI): 2.7–8.6) of Greater Manchester white Caucasians have deficient
(o5 ng ml�1) 25(OH)D, 62.5% (CI: 55.2–69.4) have insufficient, and only 2.9% (CI: 1.4–5.6) have proposed optimal
levels. After the simulated summer exposures, 90 (CI: 84.9–93.7) and 26.2% (CI: 20.1–33.2) reached 20 and
32 ng ml�1 25(OH)D, respectively. Assuming midday UVB levels, sufficient but suboptimal vitamin D status is
attained after a summer’s short (13 minutes) sunlight exposures to 35% skin surface area; these findings will
assist future public health guidance on vitamin D acquisition.
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INTRODUCTION
Policy recommendations to limit summer sunlight exposure
to prevent skin cancer have generated considerable inter-
national debate in recent years (Gillie, 2006; Wolpowitz
and Gilchrest, 2006). Skin cancer has high incidence in
countries with large populations of white Caucasians,
including the United Kingdom, United States of America,

and Australia, and incidence continues to rise, with
UVR being the principal etiological agent in the majority
(Elwood and Jopson, 1997; National Radiological Protection
Board, 2002). It is important that national and international
authorities advise summer sunlight limitation in these
populations (Ziegelberger et al., 2006). However, UVB in
sunlight triggers cutaneous synthesis of pre-vitamin D from
7-dehydrocholesterol, and this is the body’s principal vitamin D
source because usually only small amounts are obtained from
diet (Hollis, 2005). Thus, public health policy on sunlight
exposure should also consider vitamin D requirements.

Historically, vitamin D deficiency was defined as the
circulating level of 25 hydroxyvitamin D (25(OH)D) asso-
ciated with the development of the severe bone disorders,
rickets, and osteomalacia, that is, o5–10 ng ml�1 (Berry
et al., 2002). The value 5 ng ml�1 is still used as the
deficiency cutoff by national agencies such as the United
Kingdom’s Health Protection Agency and Department of
Health (1998), although this is under reevaluation. Strong
evidence exists showing that 25(OH)D levels o20 ng ml�1

are associated with secondary hyperparathyroidism, bone
loss, fractures, muscle weakness, and reduced calcium
absorption (Bischoff et al., 2003; Heaney et al., 2003;
Zittermann, 2003; Bischoff-Ferrari et al., 2004). Parathyroid
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hormone (PTH) is suppressed as the 25(OH)D level rises
(Hollis, 2005), with a plateau being reached between 20
(Malabanan et al., 1998) and 40 ng ml�1 (Chapuy et al.,
1997; Thomas et al., 1998). On the basis of these associa-
tions, some researchers now believe that 25(OH)D levels
X20 ng ml�1 are required to avoid vitamin D deficiency
(Malabanan et al., 1998; Wolpowitz and Gilchrest, 2006;
Norman et al., 2007; Holick, 2009), whereas it is proposed
that an optimal level for health is reached at 30–32 ng ml�1 or
higher (Hollis, 2005; Bischoff-Ferrari et al., 2006). Significant
percentages of populations at northerly latitudes fall short
of these levels (Webb and Engelsen, 2006; Hypponen and
Power, 2007; Hirani et al., 2009).

Evidence continues to grow of wider health benefits
conveyed by vitamin D, with much of this being indirect in
nature. Mortality from prostate, colon, and breast cancers is
inversely associated with ambient UVB, and this has been
attributed to low vitamin D status (Berwick and Kesler, 2005;
Garland et al., 2006; Holick, 2006), whereas the Interna-
tional Agency for Research on Cancer (2008) supports a
protective role for vitamin D in colon cancer. Further
evidence exists for a beneficial effect of vitamin D on other
diseases, including multiple sclerosis, tuberculosis, diabetes,
hypertension, and other cancers (Zittermann, 2003; Holick,
2004; Vieth, 2006; Lipworth et al., 2009), although epide-
miological data are conflicting regarding protection against
melanoma (Millen et al., 2004; Ingraham et al., 2008; Asgari
et al., 2009). Mechanisms may involve immunomodulatory
and chemopreventive properties of 1,25-dihydroxyvitamin D,
now known to be metabolized from 25(OH)D by many
extra-renal tissues (Millen et al., 2004; Ingraham et al., 2008;
Asgari et al., 2009).

The UK Department of Health-funded SunSmart campaign
is in line with similar campaigns in many countries in its
recommendations to limit personal summer sunlight expo-
sure (http://info.cancerresearchuk.org/healthyliving/sunsmart),
whereas the United Kingdom’s Health Protection Agency, in
keeping with countries positioned at similar latitude, advises
that casual exposures to summer sunlight, containing the
requisite UVB, are sufficient for attaining vitamin D (National
Radiological Protection Board, 2002). However, there is
uncertainty regarding the specification and impact of follow-
ing this guidance, as it is based on data derived from
theoretical and in vitro models (National Radiological
Protection Board, 2002; Ziegelberger et al., 2006). To address
this, we designed a study to examine the impact of following
these recommendations on vitamin D status. A total of
120 white Caucasian subjects received simulated summer
sunlight exposures mimicking UK guidance; sample size
was selected for estimation of population variation
with adequate precision. The aims of this study were to
(i) determine whether recommended brief casual summer
sunlight exposures can achieve 25(OH)D levels X20 ng ml�1

and the proposed optimal, that is, 25(OH)D X32 ng ml�1,
vitamin D status; and (ii) provide specific information
to assist future guidance on vitamin D acquisition, by
performance under known conditions of UV dose and
skin surface area.

RESULTS
Volunteer characteristics

Of 120 recruited subjects, five were subsequently excluded
because of vitamin D supplement use, and six failed to continue
UVR treatment, resulting in 109 subjects (68% female, 32%
male) completing the study. Baseline characteristics of the 109
volunteers, including minimal erythemal dose (MED), 25(OH)D,
PTH, and serum biochemistry values are shown in Table 1. The
average daily oral vitamin D intake was low; intakes during the
first and last weeks of the study are shown in Table 1.

Circulating 25(OH)D levels rose significantly in the volunteer
group and posttreatment levels were associated with
pretreatment levels

The 6 weeks of UVR exposures caused the mean 25(OH)D
value to rise significantly by 10.4ng ml�1 (95% confidence
interval (CI): 9.1–11.8), from 17.6 ng ml�1 (SD 7.6; range:
3.1–38) before treatment to 28.0 ng ml�1 (SD 6.3; range:
10.8–50.9) after treatment (Figure 1). The increase in 25(OH)D
levels after 6 weeks of UVR treatment varied among individuals
(interquartile range: 5.4–14.5; range: 2.1–31.9 ng ml�1). Multi-
ple linear regression analysis identified that posttreatment
25(OH)D levels were significantly associated with pretreatment
25(OH)D levels (Po0.0001), consistent with the results of a
previous study (Moan et al., 2009), whereas other factors were
not significantly associated (Table 2).

The majority of the Greater Manchester, UK, white Caucasian
nonelderly adult population is predicted to have insufficient
(o20 ng ml�1) levels of 25(OH)D during wintertime

Assuming normality, the mean and SD values of the study
group were used to calculate the percentage of the Greater
Manchester population predicted to have 25(OH)D values,
indicating deficient, sufficient, and proposed optimal status
(Table 3). Baseline winter data predict that 5% (95% CI:
2.7–8.6) of the population has 25(OH)D levels o5 ng ml�1,
62.5% (CI: 55.2–69.4) has levels o20 ng ml�1, whereas
37.5% (CI: 30.6–44.8) has levels X20 ng ml�1 and only
2.9% (CI: 1.4–5.6) has levels X32 ng ml�1.

The majority of the Greater Manchester, UK, white Caucasian
nonelderly population is predicted to reach sufficient
(X20 ng ml�1) but less than the proposed optimal
(o32 ng ml�1) levels of 25(OH)D after summer sunlight
exposures according to national recommendations

After a summer’s short sunlight exposures, 90% (95% CI:
84.9–93.7) of the Greater Manchester, white Caucasian
population is predicted to reach sufficient (X20 ng ml�1)
levels of 25(OH)D, whereas 26.2% (CI: 20.1–33.2) reaches
32 ng ml�1 or higher (Table 3).

The time to acquire an equivalent vitamin D-weighted dose at North
American and European locations ranges from 9 to 16minutes

Given the same conditions as seen in the volunteers in this
study, including white skin, dressed to reveal 35% skin
surface area, and receiving a regimen of regular short midday
exposures, the exposure time taken to acquire the same
vitamin D-weighted dose across a range of European and
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North American cities is calculated to be 9–16 minutes,
compared with 13 minutes in Manchester, in midsummer (21
June; Table 4).

DISCUSSION
Our data indicate that regular short midday exposures to
summer sunlight while informally dressed would place 90%
of the Greater Manchester, UK, white Caucasian nonelderly
adult population in the vitamin D sufficiency range (25(OH)D
X20 ng ml�1), and 26% in the proposed optimal range
(X32 ng ml�1), whereas none would be in the range for
deficiency that is currently defined by the UK Department of
Health (o5 ng ml�1; 1998). Specifically, 13 minutes of mid-
day sunlight exposure on a cloudless day, three times weekly,
to 35% skin surface area over a 6-week summer period, is
required to achieve these outcomes. These findings will apply
across the majority of the UK population and to white
Caucasian populations residing in countries positioned at
similar latitude (50–601N) when equivalent summer sunlight
conditions prevail. Using knowledge of UVR action spectra
for cutaneous vitamin D synthesis and of sunlight emission

spectra over different geographical conditions, the equivalent
exposures required at a broader range of locations can also be
estimated from our data (Table 4; Webb and Engelsen, 2006).
Exposure times in the United Kingdom and elsewhere will
vary with people’s activities and the presence of shade.

An important consideration is the time of day at which
individuals are exposed to summer sunlight, as this influences
the amount of UVB available to generate vitamin D. Maximal
amounts of UVB are available at solar noon, when the sun is
directly overhead and solar radiation has the shortest path to
the earth’s surface, although in countries of mid latitude, such
as the United Kingdom, UVB is insufficient to generate
appreciable vitamin D even at midday from October to
March (Webb and Engelsen, 2006). Thus, the amount of
vitamin D generated from following current recommenda-
tions on summer sunlight exposure can range from maximal
levels, such as in our study in which midday exposures were
simulated, to minimal levels when people are exposed to
sunlight only at other times during the day, as could arise
depending on an individual’s interpretation of the SunSmart
advice. The SunSmart campaign, which is aware that UVB is

Table 1. Participant information

Participants 109

Sex: male, female (%) 35 (32.1), 74 (67.9)

Skin type: I, II, III, and IV (%) 8 (7.3), 60 (55.0), 40 (36.7), 1 (0.9)

Minimum Lower quartile Median Upper quartile Maximum

Height (m) 1.49 1.63 1.68 1.78 1.98

Weight (kg) 45.4 62.6 72.1 79.8 112.0

BMI (kg m�2) 17.7 21.8 24.5 27.5 43.7

Age (years) 20 27 35 47 60

MED (mJ cm�2) 16.0 28.0 34.0 51.0 82.0

Serum biochemistry Minimum Lower quartile Median Upper quartile Maximum Normal range

25(OH)D (ng ml�1) 3.1 11.9 15.6 22.3 38 See text

Parathyroid hormone (pmol l�1) 0.6 1.2 1.6 2.7 7.5 0.8–3.9

Sodium (mmol l�1) 133 140 141 143 148 132–144

Potassium (mmol l�1) 3.0 4.1 4.3 4.6 5.5 3.5–5.5

Urea (mmol l�1) 2.6 3.7 4.5 5.2 6.9 3.5–7.4

Creatinine (mmol l�1) 44 63 70 80 128 62–106

Calcium (mmol l�1) 2.09 2.19 2.24 2.28 2.44 2.15–2.65

Inorganic phosphorus (mmol l�1) 0.78 1.12 1.21 1.32 1.56 0.7–1.4

Alkaline phosphatase (U l�1) 25 49 57 69 172 35–105

Albumin (g l�1) 40 44 45 47 53 34–48

Alanine transaminase (U l�1) 4 9 11 16 64 5–40

Total Protein (g l�1) 67 72 75 77 91 60–80

Bilirubin (mmol l�1) 2 4 6 8 24 0–22

Iron (mmol l�1) 5.4 13 18.5 23.2 59 7–29

Average daily vitamin D intake (mg) 0.2 1.4 2.2 3.1 9.9 —

Abbreviations: BMI, body mass index; MED, minimal erythemal dose.
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the prime cause of skin cancer but that some exposure is
necessary for vitamin D synthesis, does not advocate
complete avoidance of sunlight at midday, but rather to

‘‘seek shade’’ between 1100 and 1500 hours (http://info.
cancerresearchuk.org/healthyliving/sunsmart/). However, no
specific advice is given on skin surface area or duration of
exposure. The 2002 Heath Protection Agency report advises
that short exposures to summer sunlight containing the
requisite UVB (by implication at midday), several times per
week, to limited skin areas, are sufficient for avoidance of the
vitamin D deficiency complications of rickets and osteoma-
lacia in a fair-skinned person in the United Kingdom
(National Radiological Protection Board, 2002). Given more
recent definitions of vitamin D status (Malabanan et al., 1998;
Hollis, 2005; Wolpowitz and Gilchrest, 2006), along with
suggestions based on theoretical grounds of the greater UVR
requirements that may be needed to reach this more elevated
status (Holick, 2004), agencies are aware of the need to
assess the impact of following their general advice on vitamin
D status, and to more accurately define how much sunlight
exposure is required to achieve vitamin D sufficiency. Thus,
our controlled conditions of known UVR dose and skin
surface area exposure have provided a quantitative assess-
ment that can more accurately inform future guidance.

Although the majority of our population reached 25(OH)D
levels designated sufficient immediately after the simulated
summer sunlight exposures, only a minority reached the
proposed optimal level of 32 ng ml�1. The increase in
25(OH)D levels was less than that reported in some previous
studies involving UVR exposures, but in these studies,
volunteers received near total skin surface exposure
(Varghese et al., 1989; Holick et al, 2007; Thieden et al,
2008), whereas our volunteers wore casual clothing to reveal
areas of skin commonly exposed during leisure activities; this
is important as it cannot be assumed that different skin sites
are equally efficient in synthesizing vitamin D. In addition,
both oral vitamin D supplements and ambient UVB exposure
were excluded to avoid confounding of UVR treatment
outcomes. We observed the weekly incremental increase in
mean 25(OH)D levels to reduce steadily during the course,
with increases of only 0.8 and 0.2 ng ml�1 during the last two
weeks, suggesting that levels would plateau if UVR exposures
continued, in agreement with previous smaller studies
(Porojnicu et al., 2008; Thieden et al., 2008). This may be
attributable to photoadaptation through UVR-induced epi-
dermal thickening and melanization. In addition, the
sufficient levels attained through summer exposures are
anticipated to fall during the UK winter months (Hypponen
and Power, 2007; Hirani et al., 2009). Our study revealed
low baseline 25(OH)D levels, with 5% of the population in
the deficiency range, and only 37.5 and 3% reaching
sufficiency and optimal levels, respectively. Thus, the Greater
Manchester population was representative of the wider UK
population, a substantial proportion of which does not
currently achieve a pattern of UVB exposure and oral intake
conferring vitamin D sufficiency during winter (Hypponen
and Power, 2007; Hirani et al., 2009).

Sunburn is a risk factor for malignant melanoma and non-
melanoma skin cancer (Elwood and Jopson, 1997; National
Radiological Protection Board, 2002), and has a greater
probability of occurring after exposure during midday hours,
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Figure 1. Impact of simulated summer sunlight exposures on circulating

25(OH)D levels (a) The 25(OH)D levels in the study group before the

course of UVR, at weekly intervals during treatment, and at the end

of the UVR course are displayed; mean values are displayed as horizontal

lines. (b) Number of individuals displaying insufficient (o20 ng ml�1)

and sufficient (X20 ng ml�1) 25(OH)D levels.

Table 2. Association of post-UV course 25(OH)D
levels with participant baseline characteristics

Factor Estimate1 95% CI P-value

Pre-treatment 25(OH)D 0.41 0.27–0.55 o0.0001

Age �0.00 �0.10 to 0.10 0.94

Sex (F vs M) 0.32 �2.02 to 2.65 0.79

BMI �0.18 �0.44 to 0.08 0.16

Log MED �0.61 �3.15 to 1.93 0.63

Log dietary vitamin D 0.37 �0.28 to 1.03 0.22

Cohort (1 vs 2) �1.31 �3.49 to 0.87 0.23

Abbreviations: BMI, body mass index; CI, confidence interval; MED,
minimal erythemal dose.
1Estimates are modeled differences in post-treatment 25(OH)D levels per
unit increase in factor.
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that is, at the optimal time for vitamin D synthesis. We
propose that future public health messages could promote
regular short exposures to midday summer sunlight, their
duration limited to below the sunburn threshold. Even
suberythemal doses of UVR can cause DNA damage to skin
cells (Young et al., 1998); however, with sufficiently short
exposures, the benefit/risk ratio is anticipated to be favorable
for most individuals (Webb and Engelsen, 2006). Longer
exposures do not provide further benefit, as cutaneous
vitamin D production quickly reaches an equilibrium on
UVR exposure due to photoisomerization of pre-vitamin D
(Webb et al., 1988), and vitamin D itself can be degraded
(Webb et al., 1989). However, attention to the skin surface
area exposed is likely to be pivotal.

Individuals at high risk of developing skin cancer,
including the immunosuppressed, and people with genetic
susceptibility to, or previous history of, skin cancer will
clearly need to continue to be advised to practice sunlight
avoidance; oral supplements may be important in these
individuals. Other sectors of the UK population known to be

at heightened risk of inadequate vitamin D status, including
infants, the elderly, and people with pigmented skin, are
currently advised to take vitamin D supplements (Department
of Health, 1998).

In contrast, the recommended oral intake of vitamin D for
healthy white nonelderly adults is low, that is, 5 mg (200 IU)
per day, as advised by the WHO (2004) and by authorities in
several European countries (Doets et al., 2008), United States
of America, and Canada (Institute of Medicine Food and
Nutrition Board, 1997), whereas 0 mg day�1 is advised in the
United Kingdom (Department of Health, 1998), as the
cutaneous route was assumed to fulfill vitamin D require-
ments. Evidence is growing that increased oral intake (food
fortification/supplements) is required in the general popula-
tion (Holick, 2006). This may apply even in situations in
which people spend extended periods outdoors, as in a study
of 30 men with extensive outdoor activities at 39–46.81N, the
elevated median 25(OH)D level of 50 ng ml�1 at the end of
summer was followed by wintertime levels of o30 ng ml�1 in
half of the group (Barger-Lux and Heaney, 2002). The debate
continues as to what represents a ‘‘normal’’ vitamin D status,
with increasing literature supporting 430–32 ng ml�1

25(OH)D as optimal (Bischoff-Ferrari et al., 2006; Holick
2009), with proposals that levels below this could be defined
as insufficient and o20 ng ml�1 as frankly deficient (Holick
2009). Should national/international authorities redefine
25(OH)D levels for vitamin D status, our data can be
reinterpreted in the light of these, but it is evident that
reevaluation of recommendations on oral vitamin D intake,
in addition to sunlight exposure levels, would be required to
provide 25(OH)D levels 430–32 ng ml�1 through the year in
populations residing at higher latitudes.

In conclusion, we tested UK policy recommendations on
vitamin D acquisition in healthy white Caucasian nonelderly
adults, which advise that satisfactory vitamin D status is
achieved solely through the cutaneous route, after casual
short summer sunlight exposures. We found that the majority
of the population reaches a 25(OH)D level that is designated
as sufficient (X20 ng ml�1), but not the proposed optimal
level (X32 ng ml�1), after a simulated summer’s sunlight
exposures, specifically 13 minutes of midday sun to 35% skin
surface area, three times weekly for 6 weeks; these in vivo

Table 3. Estimated percentage (95% CI) of the Greater Manchester, UK population exhibiting deficient, sufficient,
and the proposed optimal circulating 25(OH)D levels

Week of study Deficient o5 ng ml�1 Sufficient X20 ng ml�1 Proposed optimal X32 ng ml�1

0 5.0 (2.7–8.6) 37.5 (30.6–44.8) 2.9 (1.4–5.6)

1 0.9 (0.3–2.2) 59.0 (51.7–66.0) 6.9 (4.0–11.2)

2 0.2 (0.04–0.6) 72.7 (65.7–78.9) 10.5 (6.7–15.7)

3 0.1 (0.01–0.3) 80.8 (74.3–86.1) 14.7 (10.1–20.6)

4 0.01 (o0.01–0.1) 87.5 (82.0–91.7) 19.3 (13.9–25.7)

5 0.01 (o0.01–0.1) 89.8 (84.7–93.5) 25.4 (19.3–32.3)

6 0.01 (o0.01–0.1) 90.0 (84.9–93.7) 26.2 (20.1–33.2)

Abbreviation: CI, confidence interval.

Table 4. Estimated time taken to acquire the same
vitamin D-weighted dose as used in this study, at
different North American and European locations at
local noon on June 21 and December 21

City Latitude1 (deg, min)
Summer2

(minutes)
Winter2

(minutes)

New

Orleans

29, 57 9 39

San Diego 32, 42 9 49

Athens 37, 58 9 —

Washington 38, 53 9 —

Boston 42, 21 10 —

Vancouver 49, 13 11 —

Brussels 50, 52 12 —

Manchester 53, 30 13 —

Oslo 58, 57 16 —

1Latitude is given in degrees and minutes.
2Times are given to the nearest minute; times 41 h are not shown.
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findings will assist future public health advice on vitamin D
acquisition. Further research should establish the 25(OH)D
level required for optimal health, whether this should be
maintained throughout the year, and if so, the best strategy
(sunlight and dietary) for achieving this.

MATERIALS AND METHODS
Volunteers

Ethical approval was obtained from the North Manchester Research

Ethics Committee (reference 06/Q1406/6). Written informed consent

was obtained from the participants and the study adhered to the

Declaration of Helsinki Principles. Volunteers (n¼ 120) were white

Caucasians, sun-reactive skin types I–IV, aged 20–60 years, from

Greater Manchester, UK. The exclusion criteria were pregnancy,

breastfeeding, taking vitamin D supplements or photoactive medica-

tion, history of skin cancer, photosensitivity or systemic lupus

erythematosus, and use of a sunbed or sunbathing in the 3 months

before the commencement of the study or during the study. For

logistical reasons, 60 subjects participated in January–February 2007

and 60 in January–February 2008.

Simulated summer sunlight exposures

A 6-week course of UVR exposures was selected to be concordant

with the length of the summer school holiday period when the

population is most exposed to sunlight. Subjects were exposed to a

constant UVR dose three times weekly using a whole body

irradiation cabinet (Philips HB598, Eindhoven, The Netherlands)

fitted with a combination of Arimed B (Cosmedico GmbH, Stuttgart,

Germany) and Cleo Natural (Philips, Eindhoven, The Netherlands)

fluorescent tubes, that is, lamps with UVR emission spectrum similar

to sunlight (emission 290–400 nm, 95% UVA: 320–400 nm, 5%

UVB: 290–320 nm). This was characterized using a Bentham DTM

300 spectroradiometer (Bentham, Reading, UK) and monitored using

an Ocean Optics S2000 spectroradiometer (Ocean Optics, Dunedin,

FL). Volunteers wore standardized T-shirts and knee-length shorts to

expose approximately 35% skin surface area. The UVR course was

given in January and February when ambient UVB is negligible at

UK latitudes (50–601N; Webb and Engelsen, 2006). A UVR exposure

of 1.3 SED (Diffey et al., 1997), equivalent to 1.1 SED in sunlight,

was given to each subject at every visit, after a pilot study showed

that this dose increased 25(OH)D levels without causing skin

erythema. The time required to deliver the dose was found to be

6.5 minutes after accurate measurement of cabinet UV irradiance

(Taylor et al., 2002); a constant UVR dose was maintained

throughout the study by adjusting for any decrease in irradiance by

increasing delivery time. The pre-vitamin D irradiance dose for one

exposure in the cabinet was equivalent to 13 minutes of sunlight

exposure on a clear June midday in Manchester, UK (53.51N).

Although the UVR spectra of the treatment cabinet and that of a clear

summer (June) midday differ, the pre-vitamin D irradiance of the

lamps (calculated by multiplying the cabinet irradiance with the

7-dehydrocholesterol to pre-vitamin D conversion action spectrum;

MacLaughlin et al., 1982), that is, the biologically relevant quantity,

is very similar to, although approximately twice, that of a clear June

day in Manchester at noon (Figure 2). Thus, our simulation was

designed to mimic short (13 minutes) unshaded midday exposures

while wearing informal clothing, three times weekly, over the

summer holiday period.

Minimal erythemal dose assessment

Each subject’s MED was assessed before treatment. A geometric

series of 10 doses (13–128 mJ cm�2) of erythemally weighted UVR

was applied over two horizontal rows to buttock skin using a

Waldmann UV 236 B unit with Waldmann CF-L 36W/UV6 lamps

(Waldmann GmbH, Villingen-Schwenningen, Germany; peak emis-

sion 313 nm, range: 290–400 nm). The MED value was defined as the

lowest dose of UVR to result in visually discernible erythema at 24 h.

Diet questionnaires

To estimate approximate oral vitamin D intake during first and last

weeks of the study, volunteers completed daily diet questionnaires

regarding vitamin D-fortified foods and six food categories: cheese;

butter, margarine and other oily spreads; milk and milk-containing

products; red meat; oily fish; and eggs and egg dishes. The vitamin D

content of foodstuffs was obtained from the 5th edition and

integrated data set of McCance and Widdowson’s The Composition

of Food (Holland et al., 1991; The Food Standards Agency, 2002),

and from food package labeling.

Vitamin D, PTH, and serum biochemistry

Blood samples were taken weekly, and serum stored at �201C until

completion of the study. Serum 25(OH)D was measured by high-

pressure liquid chromatography as reported previously (Berry et al.,

2007). The laboratory is accredited to ISO 9001:2000 and ISO

13485:2003 standards, and participates successfully in the national

Vitamin D quality assurance scheme (DEQAS). Serum PTH level was

measured before the commencement of course of UVR exposure,

using the OCTEIA immunoenzymometric assay, following the

manufacturer’s instructions (Immunodiagnostic Systems, Boldon,

Tyne and Wear, UK), with sensitivity 0.06 pmol l�1 and intra- and

interassay coefficients of variation 4 and 6%, respectively. Serum

biochemistry was measured using the Hitachi 917 autoanalyser

(Hitachi, Tokyo, Japan) before UVR treatment, including renal and

liver function tests.
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Figure 2. Pre-vitamin D irradiance emission from the irradiation cabinet versus

that of a clear Manchester, UK (53.51N) summer day at noon. The pre-vitamin D

irradiance emission from the Phillips HB598 whole body cabinet (bold line) is

spectrally comparable to, and approximately twice as high as, the solar

emission (regular line, shown twice the value) on a clear Manchester, UK

summer day at noon. At wavelengths 4340 nm, the radiation is not effective at

producing pre-vitamin D and, therefore, is not a concern for this investigation.
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Definition of vitamin D levels
The definitions used in this study are as follows: circulating levels of

25(OH)D below 5 ng ml�1 (12.5 nmol l�1) are defined as deficient;

below 20 ng ml�1 (50 nmol l�1) as insufficient; equal to or greater

than 20 ng ml�1 as sufficient; below 32 ng ml�1 (80 nmol l�1) as

‘‘sub-optimal’’; and 32 ng ml�1 and above as optimal.

Outcome measures

Our primary outcome measure was the percentage of the population

reaching circulating 25(OH)D levels designated sufficient

(X20 ng ml�1) after a simulated summer exposure. Other outcomes

were the percentages of the population reaching 25(OH)D

levels proposed to be optimal for health (X32 ng ml�1) after

exposure, and percentages exhibiting deficient (o5 ng ml�1), suffi-

cient, and proposed optimal levels during the baseline winter

assessment.

Calculation of the time to acquire the same vitamin D-weighted
dose as used in this study, at different European and North
American locations

Time taken to acquire the same vitamin D-weighted dose as used in

this study was calculated for a range of European and US locations at

local noon time on 21 June and 21 December. Calculations (http://

nadir.nilu.no/~olaeng/fastrt/fastrt.html) used constant atmospheric

conditions (cloudless sky, visibility 25 km, ozone 350 DU, albedo

0.05, and altitude 15 m). Although not exact for any site, these

conditions are representative of those found at the locations. Dose

rates were calculated using the CIE action spectrum for synthesis of

pre-vitamin D in human skin (MacLaughlin et al., 1982). To achieve

the same change in vitamin D status as that in our volunteers,

characteristics similar to this study, including skin type, manner of

dress (skin surface revealed), and regimen of regular noontime

exposures, are required.

Sample size and statistical analyses

As the minimum recommended sample size for estimating the

population SD value is 100 (Altman, 1991), we recruited 120

volunteers, allowing for a 15% dropout rate. Estimates and CI values

for the proportions above and below the threshold values for

population 25(OH)D levels were calculated from the weekly

observed means and SD values by assuming normality. Factors

associated with posttreatment 25(OH)D values were assessed using

multiple linear regression. Where appropriate, variables were

transformed to satisfy normality assumptions for regression.
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