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Vitamin D has been shown to play critical activities in several physiological pathways not involving the calcium/phosphorus
homeostasis. The ubiquitous distribution of the vitamin D receptor that is expressed in a variety of human and mouse tissues has
strongly supported research on these “nonclassical” activities of vitaminD.On the other hand, the recent discovery of the expression
also for vitaminD-related enzymes (such as 25-hydroxyvitaminD-1𝛼-hydroxylase and the catabolic enzyme 1,25-dihydroxyvitamin
D-24-hydroxylase) in several tissues suggested that the vitamin D system is more complex than previously shown and it may act
within tissues through autocrine and paracrine pathways. This updated model of vitamin D axis within peripheral tissues has been
particularly investigated in atherosclerotic pathophysiology. This review aims at updating the role of the local vitamin D within
atherosclerotic plaques, providing an overview of both intracellular mechanisms and cell-to-cell interactions. In addition, clinical
findings about the potential causal relationship between vitamin D deficiency and atherogenesis will be analysed and discussed.

1. Introduction

Since its discovery in the early 1900s, the role of vitaminDhas
been limited to calcium/phosphate homeostasis through a
predominant action on the kidney, intestine, and bone [1]. On
the contrary, evidence in recent decades has suggested that
vitamin D might play a critical role in many other metabolic
pathways, referred as “nonclassical effects” [2]. Thus, vitamin
D is currently under investigation in cancer [3], autoimmune
disorders [4], infections [5], and neurological [6] and cardio-
vascular (CV) diseases. A large amount of observational stud-
ies has shown that vitamin D deficiency is associated with a
wide range of CV risk factors [7], as well as poor CV outcome
[8], but more recent findings from interventional trial have
weakened this initial enthusiasm with a more sceptical view.
Ultimately, Brandenburg correctly stated: “there should be
less persuasive observational associative data, but more con-
vincing interventional results in the field of vitamin D” [9].
Certainly, a critical analysis of literature has revealed several

limitations especially in study design, but also the newer
insights about the local activity of vitamin D within periph-
eral tissues might explain the conflicting results between
interventional and observational studies. In this new research
approach, 25-hydroxyvitamin D-1𝛼-hydroxylase (CYP27B1)
is emerging as a main regulator of the extrarenal vitamin D
system along with the catabolic enzyme 1,25-dihydroxyvita-
min D-24-hydroxylase (CYP24A1) and vitamin D receptor
(VDR). The aim of this review is to update the current evi-
dence about the role of vitamin D in the pathophysiology of
atherosclerosis and suggest a critical basis for future investi-
gations.

2. Vitamin D Signalling

The availability of vitamin D is largely dependent on sunlight
exposure (more than 80% of the requirements). In skin,
ultraviolet-B (UVB) radiation induces the conversion of 7-
dehydrocholesterol to the inactive precursor of vitamin D,
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through a photosynthetic reaction which evolved over 750
million years ago [10]. Subsequently, the 25-hydroxylation in
the liver generates the 25-hydroxyvitamin D [25(OH) vita-
min D or calcidiol] [11], which is biologically inactive but
nonetheless used as marker of vitamin D status because of
being stable, largely circulating, and easy to quantify. Calcid-
iol becomes active after conversion to 1,25-dihydroxyvitamin
D [1,25(OH)

2
vitamin D or calcitriol] which occurs through

the action of CYP27B1, the rate-limiting enzyme [12].
Accordingly, CYP27B1 activity is tightly regulated with feed-
back controlmechanisms (at least in the kidney) involving the
parathyroid hormone (PTH), calcitonin, 1,25(OH)

2
vitamin

D itself [13], and CYP24A1 (the catabolic enzyme of vitamin
D) [14]. The biological response to 1,25(OH)

2
vitamin D

is mediated by VDR, a DNA-binding transcription factor
member of the nuclear receptor superfamily. VDR activation
requires the binding to both 1,25(OH)

2
vitamin D and one

of retinoid X receptors (RXR 𝛼, 𝛽, or 𝛾). Only in this
heterodimeric form VDR complex recognizes the vitamin D
response elements (VDRE), repeated sequences of 6 hexam-
ers in the promoter region of target gene. Furthermore, since
VDR may regulate 3% to 5% of human genome, allosteric
influences, VDRE location, and epigenetic modification of
DNA and histones modulate the VDR activity in the different
cell types [15]. An additional feature shown by VDR (and
by the whole nuclear receptor superfamily) is the ability to
bind multiple lipophilic ligands, thus amplifying the vitamin
D signalling activity. Interestingly, an extranuclear expression
of VDR (on cell surface membrane and mitochondria) was
recently discovered [16, 17] and shown to trigger nongenomic
rapid responses [18].

Unlike the genomic responses (generally taking several
hours till days to be fully manifest), these rapid nongenomic
responses are generated in a shorter period of time (1-2 to 45
minutes). As already recognized for other steroidal hormones
[19–21], plasma membrane caveolae are involved in vitamin
D-induced rapid responses. Caveolae are localized within the
lipid-rafts (microdomains of the plasma membrane enriched
in sphingolipids and cholesterol) andmight promote intracel-
lular responses by flask-shaped membrane invagination [22].
VDRwas found to be closely localized to caveolae [23], as also
suggested by functional studies [24].TheVDR-caveolae com-
plex may activate several downstream intracellular signalling
cascades involving kinases, phosphatases, and ion channels
as well as modulate gene expression, in a cross-talk with the
classical genomic effects of vitamin D [25].

Ultimately, these recent insights, together with the ability
to bind multiple lipophilic ligands (feature shared by the
whole nuclear receptor superfamily), further increased com-
plexity in vitamin D signalling pathways.

3. Vitamin D System and Atherosclerosis:
Clinical Findings

Acute ischemic atherosclerotic complications are the leading
cause ofmortality andmorbidity worldwide [26]. To date, it is
commonly accepted that atherosclerotic plaque development
is orchestrated by chronic low-grade inflammatory processes

occurring within the arterial wall, in peripheral organs, and
in the systemic circulation [27]. Endothelial dysfunction is
a very early step in atherogenesis, especially at sites charac-
terized by disturbed laminar flow. This pathophysiological
event promotes subendothelial accumulation of low density
lipoproteins (LDLs) [28]. Within the subintimal space of the
arterial wall, LDLs (whether in native form or modified by
oxidative stress) trigger inflammatory and vascular resident
cells to produce several mediators attracting circulating
leukocytes, including monocytes [29], neutrophils [30], and
lymphocytes [31]. This chronic inflammatory process is
responsible for the atherosclerotic plaque structure (includ-
ing the necrotic lipid core and the fibrous cap) and promotes
plaque instability [32]. Several observational studies and
recent meta-analyses in humans showed that circulating
25(OH) vitamin D was inversely correlated with poor CV
outcomes [8, 33, 34]. However, the first randomized clinical
trials have provided even more discouraging results [34, 35].
In addition, also studies investigating the potential relation-
ship between serum vitamin D and atherosclerotic plaque
vulnerability have provided ambiguous results. For instance,
studies focusing on carotid intima-media thickness (cIMT),
a well-recognized biomarker of subclinical atherosclerosis
also associated with a wide range of CV risk factors and CV
diseases [36], showed a potential relationship between vita-
min D deficiency and atherogenesis (Table 1). In particular,
Deleskog and coworkers, in a longitudinal evaluation of 3,430
patients at high cardiovascular risk but without prevalent dis-
ease, failed to show an increased cIMTprogression in vitamin
D deficient patients when compared with the group with suf-
ficient vitaminD [37].On the other hand, the significant asso-
ciation between low vitamin D levels and a wide range of CV
risk factor observed in this cohort did not prove any potential
connections between vitamin D and clinical atherosclerotic
outcomes. These recent findings are in accordance with pre-
vious observational studies. The research groups of Targher
et al. and Liu et al. demonstrated an inverse correlation
between vitamin D levels and cIMT severity [38, 39]. Among
a subgroup of patients with end-stage renal disease, only
Kraśniak and colleagues [40] showed a linear inverse corre-
lation between 25(OH) vitamin D and cIMT. On the other
hand, the case-control study of Briese et al. [41] and the cross-
sectional analysis of Zang and coworkers [42] failed to prove
any association. Likewise, in two observational cohorts of
HIV-infected patients, vitamin D deficiency was showed as
correlated with cIMT severity [43, 44]. However, these results
were not confirmed by a recent larger simple size cross-
sectional study [45]. Furthermore, recent studies (enrolling
community-dwelling healthy subjects) failed to prove any
relationships between vitamin D deficiency and cIMT. How-
ever, although these studies enrolled a large cohort of
patients, they were designed with serious limitations. For
instance, both geographical and seasonal differences in sun-
light exposuremight influence vitaminD status evaluation, as
well as African race and old age. In addition, large simple size
studies of vitaminD have been shown to underestimate other
confounding factors, including differences in physical activity
and dietary habits of patients, which may have significantly
impacted the results [46–53]. As reported in Table 2, another
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Table 1: Observational studies investigating the relationship between vitamin D and carotid intima-media thickness.

Author Year Study design
(sample size)

Country
(ethnicity)

Age

Correlation
(lower range of
25(OH)D)

Findings

Briese et al.
[41]

2006
Case-control

(40 ESRD patients
and 40 matched
healthy controls)

Germany
(Caucasian)

Mean 23.6 years

No
(linear correlation)

There was no difference in CCA-IMT between the
two groups. This study failed to correlate

25(OH)D and cIMT.

Targher
et al. [38]

2006
Case-control

(390 TDM2 patients
and 390 healthy

controls)

Italy
(Caucasian)
50–65 years

Yes
(<37.5 nmol/L)

Low 25(OH)D level independently predicted
CCA-IMT (𝑃 < 0.001).

Kraśniak
et al. [40]

2007
Cross-sectional
(73 patients in
haemodialysis)

Poland
(Caucasian)
25–75 years

Yes
(linear correlation)

The study showed a linear inverse correlation
between 25(OH)D and CCA-IMT at univariate

analysis (𝑃 < 0.01).

Michos
et al. [46]

2009 Cross-sectional
(650 Amish people)

U.S.
(Caucasian)
Stratified

No
(I quartile <
18.1 nmol/L)

The study failed to detect an association between
25(OH)D and cIMT.

Pilz et al.
[47]

2009
Prospective
observational

(614 subjects from the
Hoorn study)

Netherlands
(Caucasian)

Mean 68.5 years

No
(not provided)

This post hoc analysis failed to detect an
association between 25(OH)D and cIMT.

Reis et al.
[48]

2009
Cross-sectional
(654 older adults
from Rancho

Bernardo Study)

U.S.
(Caucasian)
55–96 years

Yes
(I quartile <
32.0 nmol/L)

In this study, 25(OH)D was associated with
geometric mean internal cIMT (𝑃 for trend =
0.02) but not CCA-IMT. Instead 1,25(OH)2D or

PTH did not correlate with IMT.

Hajas et al.
[58]

2011
Cross-sectional

(125 females MCTD
patients)

Hungary
(Caucasian)
Mean 53.6

Yes
(linear correlation)

The study reported a significant linear inverse
association between 25(OH)D and cIMT

(𝑃 < 0.001).

Richart
et al. [49]

2011
Cross-sectional

(542 females from
FLEMENGHO study)

Belgium
(Caucasian)
Stratified

No
(linear correlation)

cIMT was associated with PTH/25(OH)D ratio
(𝑃 < 0.01), not with 25(OH)D alone.

Choi et al.
[43]

2011
Cross-sectional
(139 HIV-infected

subjects)

U.S.
(Caucasian and

African Americans)
Mean 45 years

Yes (<37.5 nmol/L)
At adjusted analysis, 25(OH)D insufficiency was

associated with higher mean cIMT levels
(𝑃 = 0.02).

Ross et al.
[44]

2011
Case-control

(149 HIV-infected
subjects)

U.S.
(Caucasian and

African Americans)
Not provided

Yes
(not provided)

At adjusted analysis, 25(OH)D insufficiency
increased risk of CCA-IMT (OR 10.62 (CI 95%

1.37–82.34); 𝑃 < 0.01).

Pacifico
et al. [59]

2011
Cross-sectional
(452 children and

adolescent)

Italy
(Caucasian)
Stratified

No
(I tertile <

42.5 nmol/L)

This post hoc analysis failed to detect an
association between 25(OH)D and cIMT.

Carrelli
et al. [50]

2011
Cross-sectional

(203 subjects from the
Northern Manhattan

study)

U.S.
(Caucasian and

African Americans)
50–93 years

Yes
(linear correlation)

Multiple regression analysis showed an
independent inverse correlation of 25(OH)D with
cIMT (𝑃 = 0.05) as well as total plaque thickness

(𝑃 = 0.03).

Shikuma
et al. [45]

2012
Cross-sectional

(1003 HIV-infected
subjects from the
HAHC-CVD)

U.S.
(Caucasian and other

races)
Mean 52 years

No
(I tertile <
25 nmol/L)

This cohort did not show any correlation between
25(OH)D and cIMT.

Lim et al.
[51]

2012
Cross-sectional

(921 subjects from the
KLoSHA)

Korea
(Asian)
Mean 76

No
(<37.5 nmol/L)

This study failed to prove a correlation between
25(OH)D and cIMT.
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Table 1: Continued.

Author Year Study design
(sample size)

Country
(ethnicity)

Age

Correlation
(lower range of
25(OH)D)

Findings

Liu et al.
[39]

2012 Cross-sectional
(300 TDM2 patients)

China
(Asian)

Not provided

Yes
(<26.17 nmol/L)

Lower 25(OH)D levels inversely correlated with
cIMT (𝑃 for trend < 0.05) also at multivariate
analysis (𝑃 < 0.01). Similar findings were

observed comparing patients with and without
carotid atherosclerosis (𝑃 < 0.01).

Knox et al.
[52]

2012
Cross-sectional

(625 healthy subjects
from pSoBid study)

UK
(not provided)

35–64

No
(linear correlation)

There was no evidence of an association of
increasing 25(OH)D with risk of plaque presence

or cIMT in the whole group in univariate or
adjusted models.

Zang et al.
[42]

2012
Cross-sectional
(151 patients with

diabetic nephropathy)

China
(Asian)

Not provided

No
(<37.5 nmol/L)

This study failed to prove a correlation between
25(OH)D and cIMT.

Oz et al.
[60]

2013
Cross-sectional
(222 patients

undergoing coronary
angiography)

Turkey
(Turkish)
Stratified

Yes
(<75 nmol/L)

The vitamin D deficient group showed an
independent and inverse correlation with cIMT

(𝑃 < 0.001)

Blondon
et al. [53]

2013

Cross-sectional and
longitudinal

(3251 subjects from
the Multi-Ethnic

Study of
Atherosclerosis)

US
(Caucasian, African
Americans, Asian,

Hispanic)
Mean 60 years

No
(<50 nmol/L)

At multivariate analysis 25(OH)D failed to
correlate with cIMT both in cross-sectional and in

longitudinal analysis.

Kiani et al.
[61]

2013
Longitudinal
observational

(154 patients from the
LAPS)

US
(Caucasian, African
Americans, and

others)
Stratified

Mean 46 years

No
(<52.5 nmol/L)

After 2 years of follow-up, this study failed to
prove a correlation between 25(OH)D and cIMT.

Sypniewska
et al. [62]

2014
Cross-sectional
(98 hypertensive

patients)

Poland
(Caucasian)
42–58 years

Yes
(<52.5 nmol/L)

In this cohort, 25(OH)D was inversely correlated
with cIMT (𝑃 < 0.02).

Deleskog
et al. [37]

2013
Longitudinal
observational

(3430 subjects with
high CV risk)

Europe
(not provided)
Mean 64 years

No
(<25 nmol/L)

25(OH)D correlated with CV risk factors but not
with cIMT progression after 30 months follow-up.

ESRD: end-stage renal disease; CCA-IMT: common carotid artery intima-media thickness; cIMT: carotid intima-media thickness; TDM2: type 2 diabetes
mellitus; PTH: parathyroid hormone; MCTD: mixed connective tissue disease; FLEMENGHO: Flemish Study on Environment, Genes and Health Outcomes;
HIV: human immunodeficiency virus; OR: odds ratio; CI: confidence of interval; HAHC-CVD: Hawaii aging with HIV-cardiovascular; KLoSHA: Korean
Longitudinal Study on Health and Aging; pSoBid: psychological, social and biological determinants of ill health; LAPS: Lupus Atherosclerosis Prevention
Study; and CV: cardiovascular.

CV surrogate parameter of atherogenesis (coronary artery
calcium (CAC) score) has been used to investigate the
potential direct association between low vitamin D levels
and increased atherosclerotic plaque burden. An increased
vascular calcification was previously associated with vitamin
Ddeficiency in both experimental and clinical studies [54]. In
particular, the most important clinical results were provided
by the subgroup analyses from studies enrolling a large
sample size. Mehrotra et al. reported a significant inverse cor-
relation between vitamin D deficiency and CAC (prevalence
and score) in patients with diabetic nephropathy [55]. On the
other hand, both a recent study by Zang et al. [42] and a
cross-sectional analysis from the Korean Longitudinal Study

on Health and Aging did not confirm these results and failed
to prove any relationships [51]. In accordance, additional
cross-sectional analyses provided conflicting results [40, 46],
whereas a predictive value of vitamin deficiency toward
coronary calcification was supported by longitudinal studies
such as the MESA (Multi-Ethnic Study of Atherosclerosis)
(RR 1.38 (CI 95% 1.00–1.52); 𝑃 = 0.04) [56] as well as a large
cohort of patients with type I diabetes mellitus (RR 6.5 (CI
95% 1.1–40.2); 𝑃 = 0.04) [57].

On the other hand, the stronger relationship between
vitamin D deficiency and atherosclerosis has been demon-
strated assessing endothelial dysfunction especially by flow-
mediated dilatation (FMD) test (Table 3). Importantly,
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Table 2: Observational studies investigating the relationship between vitamin D and carotid artery calcification.

Author Year Study design
(sample size)

Country
(ethnicity)

Age

Correlation
(lower range of
25(OH)D)

Findings

Kraśniak
et al. [40] 2007

Cross-sectional
(73 patients in
haemodialysis)

Poland
(Caucasian)
25–75 years

Yes
(linear correlation)

The study showed a linear correlation
between 25(OH)D and CAC (𝑃 < 0.01).

Mehrotra
et al. [55] 2008

Cross-sectional
(146 patients with

diabetic nephropathy
form NHANES III)

U.S.
(Caucasian, African
Americans, and

Hispanic)
Stratified

Yes
(<37.5 nmol/L)

In 25(OH)D deficient group, there was
higher CAC prevalence (𝑃 = 0.002) and

score (𝑃 = 0.04).

Michos et al.
[46] 2009 Cross-sectional

(650 Amish people)

U.S.
(Caucasian)
Stratified

No
(I quartile < 75 nmol/L)

The study failed to detect an association
between 25(OH)D and CAC.

De Boer et al.
[56] 2009

Longitudinal
observational

(1370 subjects from
MESA)

U.S.
(Caucasian, African
Americans, and

Hispanic)
Stratified

Yes
(<37.5 nmol/L)

After 3 years of follow-up, vitamin D
deficient group had increased incidence
of CAC at multivariate analysis (RR 1.38

(CI 95% 1.00–1.52); 𝑃 = 0.04).

Young et al.
[57] 2011

Longitudinal
observational

(374 TDM1 patients)

U.S.
(Caucasian)
Mean 39 years

Yes
(<50 nmol/L)

After 3 years of follow-up, 25(OH)D
deficiency was associated with higher

incidence of CAC at multivariate analysis
(RR 6.5 (CI 95% 1.1–40.2); 𝑃 = 0.04).

Shikuma
et al. [45] 2012

Cross-sectional
(1003 HIV-infected
subjects from the
HAHC-CVD)

U.S.
(Caucasian and other

races)
Mean 52 years

Yes
(I tertile < 25 nmol/L)

Lower 25(OH)D was associated with
slightly higher risk of having CAC (RR

1.02; 𝑃 = 0.04) without a linear
correlation between 25(OH)D and CAC

score.

Lim et al. [51] 2012
Cross-sectional

(921 subjects from the
KLoSHA)

Korea
(Asian)
Mean 76

No
(<37.5 nmol/L)

This study failed to prove a correlation
between 25(OH)D and CAC score.

Zang et al.
[42] 2012

Cross-sectional
(151 patients with

diabetic nephropathy)

China
(Asian)

Not provided

No
(<37.5 nmol/L)

CAC was not correlated with 25(OH)D
but only with 1,25(OH)2D3 (𝑃 < 0.05).

CAC: coronary artery calcification; NHANES III: Third National Health and Nutrition Examination Survey; MESA: Multi-Ethnic Study of Atherosclerosis;
RR: relative risk; CI: confidence interval; TDM1: type 1 diabetes mellitus; HIV: human immunodeficiency virus; HAHC-CVD: Hawaii Aging with HIV-
Cardiovascular; and KLoSHA: Korean Longitudinal Study on Health and Aging.

endothelial dysfunction is not only a predictor of future CV
events [63] but also a very early marker of atherogenesis (also
preceding angiographic or ultrasonic evidence of atheroscle-
rotic plaque [64]). A large number of cross-sectional studies
showed a significant and inverse correlation between vitamin
D levels and ultrasound assessment of endothelial dysfunc-
tion (assessed by FMD test [60, 65–69] or measuring pulse
wave velocity [62, 67, 70]), independently of other confound-
ing parameters. In addition, the relationship between vitamin
D deficiency and endothelial dysfunction was confirmed also
investigating potential biochemical markers, such as inter-
leukin (IL)-6 [65] and circulating endothelial progenitor cells
[66]. Interestingly, a very recent study of Karohl and cowork-
ers investigated the potential correlation between 25(OH)
vitamin D and the coronary flow reserve (CFR) assessed by
[(13)N]ammonia-positron emission tomography in asymp-
tomatic middle-aged male twins. Low vitamin D levels were
significantly correlated with CFR also in twin pairs, further

supporting the role of vitaminD as a key player of endothelial
function [71].

Unfortunately, although observational studies support a
potential causal relationship between vitamin D deficiency
and atherogenesis, randomized clinical trials have so far failed
to demonstrate the beneficial effects of supplementation
(Table 4). Although different treatment approaches supple-
menting vitamin D were shown as effective in increasing
plasmatic 25(OH) vitamin D concentrations, their effects on
CAC were ambiguous. However, these results were mainly
provided by subgroup analyses of large randomized clinical
trials that were not designed to assess this primary outcome
[72, 73]. Similar results were provided by treatments targeting
vitamin D supplementation on endothelial function. In fact,
in several randomized clinical trials (with a similar sample
size) showed that a short-term supplementation with vitamin
D did not clearly improve endothelial dysfunction and virtu-
ally opposite results using different methods were found [74–
80].
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Table 3: Observational studies investigating the relationship between vitamin D and endothelial dysfunction.

Author Year Study design
(sample size)

Country
(ethnicity)

Age

Correlation
(lower range of
25(OH)D)

Findings

Jablonski
et al. [65] 2011 Cross-sectional

(75 subjects)

U.S.
(Caucasian, Hispanic

and Asian)
50–79 years

Yes
(<50 nmol/L)

Brachial FMD was lower in vitamin D-deficient
group (𝑃 < 0.01), showing a linear correlation
with 25(OH)D (𝑃 < 0.01). Moreover, 25(OH)D
showed a significant inverse correlation with
IL-6 (𝑃 < 0.01) and CYP27B1 (𝑃 < 0.05).

Yiu
et al. [66] 2011

Cross-sectional
(280 TDM2 and 73
matched healthy

subjects)

Hong Kong
(not provided)

Stratified

Yes
(<50 nmol/L)

Vitamin D-deficient group showed lower
brachial FMD (𝑃 = 0.003). In addition, there

was a significant linear correlation between low
25(OH)D levels and CD133+/KDR+ EPC

(𝑃 < 0.001).

Al Mheid
et al. [67] 2011 Cross-sectional

(554 healthy subjects)

U.S.
(Caucasian, African
Americans and

Hispanic)
Mean 47 years

Yes
(linear correlation)

25(OH)D was independently correlated with
brachial FMD (𝑃 = 0.03) and PWV (𝑃 = 0.04).

Chitalia
et al. [68] 2012 Cross-sectional

(50 CKD patients)

U.K.
(not provided)
15–85 years

Yes
(linear correlation)

This study showed a linear correlation between
25(OH)D and brachial FMD (𝑃 = 0.007).

Syal
et al. [69] 2012

Cross-sectional
(100 patients

undergoing coronary
angiography)

India
(Indian)

Mean 56 years

Yes
(<50 nmol/L)

25(OH)D was independently correlated with
brachial FMD (𝑃 = 0.002).

Karohl
et al. [71] 2013

Cross-sectional
(368 soldiers from the

Vietnam Era
Registry)

U.S.
(Caucasian 93.5%)
Mean 55 years

Yes
(<75 nmol/L)

CFR assessed with PET [13N]ammonia was
lower in vitamin D-deficiency group

(𝑃 = 0.007).

Oz
et al. [60] 2013

Cross-sectional
(222 patients

undergoing coronary
angiography)

Turkey
(Turkish)
Stratified

Yes
(<75 nmol/L)

Patients with vitamin D deficiency has slower
coronary flow (RR 3.5 (CI 95% 1.1–10.5);
𝑃 = 0.01). In addition, 25(OH)D deficiency

correlated independently with FMD
(𝑃 < 0.001)

Kuloglu
et al. [70] 2013

Cross-sectional
(133 hypertensive

patients)

Turkey
(Caucasian)
Mean 62 years

Yes
(not available)

In this cohort 25(OH)D showed a signficant
correlation with PWV (𝑟 = −0.432; 𝑃 < 0.001)

Sypniewska
et al. [62] 2014

Cross-sectional
(98 hypertensive

patients)

Poland
(Caucasian)
42–58 years

Yes
(<52.5 nmol/L)

In this cohort 25(OH)D showed a signficant
correlation with PWV (𝑟 = −0.33; 𝑃 = 0.03)

FMD: flow-mediated dilation; IL: interleukin; CYP27B1: 25-hydroxyvitamin D-1-𝛼 hydroxylase; TDM2: type 2 diabetes mellitus; PWV: pulse wave velocity;
CKD: chronic kidney disease; CFR: coronary flow reserve.

4. The Intraplaque Pathophysiological
Activity of Vitamin D Axis

Recent studies suggest a local activity of vitamin D by an
autocrine/paracrine mechanism. Evidence in support of this
new paradigm includes the discovery of the expression of
CYP27B1 (rate-limiting enzyme for vitamin D synthesis) as
well as the VDR in several tissues and organs [81]. In this
regard, Adams and Hewison have proposed that these newly
discovered features of vitamin D biology are those phyloge-
netically more ancient, having been found also in single cell
organisms and in species lacking calcified skeleton [82]. The
first recognition of an extrarenal vitaminD system dates back
more than twenty-five years ago, following studies of vitamin
D metabolism in pregnancy [83] and granulomatous disease

sarcoidosis [84]. Afterwards, some studies with knockout
mice have demonstrated the expression ofCYP27B1 in several
other tissues, including skin [85], prostate [86], brain [87],
pancreas [88], adipose tissue [89], skeletal muscle [90], heart
[91], colon [92], and neoplastic tissues [93]. In 2012, Schnatz
and coworkers firstly recognized the expression of VDR
within atherosclerotic plaques of premenopausal cynomolgus
monkeys [94], also observing an interesting inverse correla-
tion between plaque burden and serum 25(OH) vitamin D
levels [95]. Whether VDR expression might be suppressed by
plaque progression or promote atherosclerotic vulnerability
has not been clarified yet. However, these results might sug-
gest that local activation of vitaminD could be involved in the
pathophysiology of atherosclerosis although the recognition
of VDR source has not been investigated yet.
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Table 4: Interventional studies investigating the relationship between vitamin D deficiency and atherosclerosis.

Author Year Study design
(sample size)

Country
(ethnicity)

Age

Intervention
(follow-up) Findings

Coronary artery calcification

Manson
et al. [72] 2010

Prospective randomized
double-blind

placebo-controlled trial
(750 postmenopausal
women from the
WHI-CACS)

U.S.
(Caucasian, Africa

Americans, Hispanic,
and Asian)
50–59 years

Calcium 500mg
×2/day or calcium
500mg + 25(OH)D
5 𝜇g twice daily or

placebo
(7 years)

After follow-up, CAC measurements
were similar in both groups also at

multivariate analysis.

Raggi et al.
[73] 2011

Prospective randomized
double-blind controlled

trial
(360 patients in

haemodialysis from the
ADVANCE trial)

U.S.
(Caucasian, Africa

Americans, Hispanic,
and Asian)

Mean 61 years

Cinecalcet
(30–180mg/day) +
active vitamin D or
vitamin D alone

(20 weeks for titration
and after 32 weeks of

follow-up)

After 52 weeks, treatment with cinecalcet
significantly slowed vascular calcification

(𝑃 = 0.009)

Endothelial dysfunction

Sudgen
et al. [74] 2008

Prospective randomized
double-blind controlled

trial
(34 TDM2 patients)

U.K.
(not provided)
Mean 64 years

Ergocalciferol loading
dose 100.000U or

placebo
(8 weeks)

Vitamin D supplementation improves
FMD (𝑃 = 0.04), in addition to reducing
systolic BP (𝑃 = 0.001) and increasing
serum levels of 25(OH)D (𝑃 = 0.02)

Tarcin
et al. [75] 2009

Longitudinal interventional
(23 subjects with 25(OH)D
< 75 nmol/L)

Turkey
(not provided)

Stratified

Ergocalciferol loading
dose

300.000U/monthly
×3 doses
(3 months)

Treatment significantly improved FMD
(𝑃 = 0.002)

Witham
et al. [76] 2010

Prospective randomized
double-blind

placebo-controlled trial
(61 TDM2 patients)

U.K.
(not provided)

Stratified

Ergocalciferol loading
dose 100.000U or

200.000 U or placebo
(8 and 16 weeks)

Supplementation significantly raised
serum 25(OH)D levels but failed to

improve FMD.

Shab-
Bidar et al.
[77]

2011
Prospective randomized
double-blind controlled

trial
(100 TDM2 patients)

Iran
(not provided)
29–67 years

Fortified diet with
Ca++ 170mg/or Ca++
170mg + 25(OH)D
12.5 𝜇g twice a day

(12 weeks)

Supplementation improved endothelial
function evaluated through adjusted
endothelin-1 (𝑃 = 0.009) and MMP-9

(𝑃 = 0.005) assay.

Witham
et al. [78] 2012

Prospective randomized
double-blind

placebo-controlled trial
(34 TDM2 patients)

U.K.
(not provided)

Stratified

Ergocalciferol loading
dose 100.000 or

placebo
(8 and 16 weeks)

Supplementation significantly improves
FMD at 8 weeks (𝑃 = 0.007) but not at 16

weeks.

Stricker
et al. [79] 2012

Prospective randomized
double-blind

placebo-controlled trial
(76 patients with PAD)

Swiss
(Caucasian)
Stratified

Ergocalciferol loading
dose 100.000 or

placebo
(1 months)

Supplementation significantly raised
serum 25(OH)D levels but failed to

improve arterial stiffness.

Yiu et al.
[80] 2013

Prospective randomized
double-blind

placebo-controlled trial
(100 TDM2 patients with
25(OH)D < 75 nmol/L)

Hong Kong
(not provided)
Mean 65 years

25(OH)D 125𝜇g/day
or placebo
(12 weeks)

Supplementation significantly raised
serum 25(OH)D and Ca++ concentration
in addition to decreasing PTH. However,

the study failed to improve vascular
function assessed by FMD circulating

EPCs and PWV.
WHI-CACS: Women’s Health Initiative Coronary Artery Calcium Study; CAC: coronary artery calcification; ADVANCE: Study to Evaluate Cinacalcet Plus
Low Dose Vitamin D on Vascular Calcification in Subjects With Chronic Kidney Disease Receiving Hemodialysis; TDM2: type 2 diabetes mellitus; FMD: flow
mediated dilatation; PAD: peripheral artery disease; EPCs: endothelial progenitor cells; and PWV: pulse wave velocity.

4.1. Vitamin D Axis and Innate Immunity. Innate immunity,
especially the mononuclear cell subset, is traditionally con-
sidered the main actor in atherosclerosis. The entire vitamin
D system (including the hydroxylases CYP27A1 [96, 97]

and CYP27B1 [98] as well as the VDR [99] and the vitamin
D catabolic enzyme 24-hydroxylase [CYP24A1] [97]) was
shown to be expressed in monocyte/macrophages. Start-
ing from the observation that VDR deletion accelerated
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atherogenesis in LDL receptor knockout (LDLR−/−) mice,
Szeto and coworkers observed that LDLR−/−/VDR−/− bone
marrow transplantation in LDLR−/− recipients mice strongly
promoted atherogenesis, thus pointing out the pivotal role of
mononuclear cells as a main target for the protective admin-
istration of vitaminD against atherogenesis [100]. However, a
significant breakthrough in this fieldwas previously indicated
by the observation that VDR-driven gene expression was
upregulated in macrophages via the concomitant activation
of toll-like receptor (TLR)4 [101–103], TLR1/2 [104], and TLR
coreceptor CD14 [105]. In addition, VDR is a target gene
for other intracellular pathways (such as those mediated
by IL-15, which are involved in monocyte differentiation to
macrophages [106]) and the T lymphocyte-released cytokines
interferon (IFN)-𝛾 [103] and IL-4 [107]. Interestingly, the
local overexpression of 1,25(OH)

2
vitamin D was shown to

promote the inflammatory response enhancing the transcrip-
tion of antimicrobial peptides (AMPs𝛽-defensin 2 and cathe-
licidin) [108] and stimulating autophagy in atherosclerosis
[109, 110] via a feedback mechanism [111]. On the other hand,
vitamin D deficiency is associated with a pro-atherogenic
monocyte phenotype (shift from M1 to M2 subtype) charac-
terized by increased NF-𝜅B activity and TLR expression as
well as enhanced endoplasmic reticulum stress and increased
expression of adhesion molecules and proinflammatory
cytokines [110, 112, 113]. Conversely, the activation of vitamin
D signalling improves the macrophage response to lipid
overload. Downregulating the expression of CD36 and the
scavenger receptor (SR)-A1, 1,25(OH)

2
vitamin D decreased

the uptake of oxidized and acetylated LDLs and then the foam
cell formation [114, 115]. In addition, 1,25(OH)

2
vitamin D

decreased cholesteryl ester formation and promoted a choles-
terol efflux frommacrophage in addition to suppressing their
migration by downregulating the chemokine receptor CCR2
[116].

On the other hand, the role of neutrophils in atherogene-
sis and related disease has been unknown for long time, even
because of being difficult to be recognized for of their short
life-span and their plastic and dynamic properties [117].
Likewise, only recently, CYP27B1 has been discovered in neu-
trophils [118], whereas VDR expression was already detected
[119]. Similar to mononuclear cells, an increased expression
of VDR and CYP27B1 may act by a feedback mechanism on
activated neutrophils, decreasing the synthesis of proinflam-
matory molecules, such as CXCL8 [119], macrophage inflam-
matory protein (MIP)-1𝛽, IL-1𝛽, and vascular endothelial
growth factor.

4.2. Vitamin D Axis and Adaptive Immunity. Through their
role of antigen presenting cells, dendritic cells (DCs) are
essential for both innate and adaptive immune systems func-
tioning [120]. DCs have been largely recognized in the wall of
healthy arteries, but their role in atherogenesis still remains
unclear [121]. As reported by Gautier and colleagues, the
transplantation of apoptosis-resistant DCs in LDLR−/− recip-
ients mice failed to accelerate plaque progression, despite the
fact that this experimental model exhibited a proatherogenic
pattern characterized by increased T-cell activation (with

a shift toward the proatherogenic Th1 phenotype) and a
rise in circulating levels of antibodies against oxidized LDL
(oxLDL) [122]. Conversely, a reduced atherosclerotic burden
was directly correlated with a reduced DC recruitment (as
observed in mice lacking CXC3R1, CCL2, and CCR5 [123–
125]). DCs are a major source of vitamin D since they con-
stitutively express high level of CYP27B1, that are enhanced
after TLR stimulation (both TLR4 [126] and TLR1/2 [106,
127]). Through an autocrine loop, 1,25(OH)

2
vitamin D was

shown to suppress DC differentiation/activation up to induce
a regression of differentiated DCs toward a more immature
stage [128]. Additional effects of 1,25(OH)

2
vitaminD onDCs

include impairment on cell chemotaxis [128] and suppression
of proinflammatory cytokines (e.g., IL-1 and tumor necrosis
factor-𝛼). In addition, 1,25(OH)

2
vitamin Dmight promote a

more tolerogenic phenotype of DCs decreasing the expres-
sion of class 2 MHC molecules, CD40, CD80, and CD86
[129, 130].

On the other hand, the regression of atherosclerotic bur-
den induced by 1,25(OH)

2
vitamin D might occur also via a

direct effect onT cells [131–133] and this is consistentwith sev-
eral lines of evidence supporting atherosclerosis as a T-cell-
driven disease [134]. Targeting more than 102 genes in CD4+
T cells, 1,25(OH)

2
vitamin D-VDR signalling might impor-

tantly regulate T-cell activity, especially the T-helper (Th)
polarization, skewing from the proinflammatory phenotype
Th1 andTh17 (by suppressing IFN-𝛾, IL-2, and IL-17) towards
an anti-inflammatoryTh2phenotype (by promoting IL-4 and
IL-5 gene transcription) [135]. In addition, a recent study
by Yadav and colleagues has demonstrated an association
between vitamin D deficiency to an increased CD4+ CD28+
T-lymphocyte count [136] (a proatherogenic T-cell subtype)
[137].

Interestingly, following the discovery that FOXP3 tran-
scription is directly targeted by VDR [138], also some bene-
ficial effects of vitamin D might involve the regulatory T-cell
(Treg) subtype [139–141] that has been described to reduce
atherosclerosis [131–133].

Overall, the immunomodulation exerted by locally acti-
vated vitaminD system on the adaptive immune system relies
not only on an autocrine loop (in addition to DCs, CYP27B1
has been recognized also in T cells [142]) but especially on a
paracrine effect regulated by a complex cross-talks between
different cell types (for instance the combined stimulation
with CD40/CD40 ligand and cytokines is the strongest indu-
cer of CYP27B1 synthesis in DCs [143]).

4.3. The Potential Interactions between Vitamin D and Other
Endocrine Pathways. Molecular and cellular mechanisms of
atherogenesis and atheroprogression were shown to involve
the upregulation of several neurohormonalmediators. One of
the best-knownhormonal axes is the renin angiotensin aldos-
terone system (RAAS). In particular through angiotensin II,
RAAS was shown to increase vascular injury by enhancing
the oxidative stress-mediated pathways and systemic inflam-
matory responses [144]. Moreover, a local vascular activity
of RAAS has been also suggested by the detection of the
expression of the angiotensin converting enzyme within
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atherosclerotic lesions [145]. VitaminD is awell-knownnega-
tive regulator of RAAS [146, 147] and this feature is emerging
as potential pathway potentially involved in vascular injury
prevention. By deleting VDR gene in LDLr−/− mice, Szeto
and coworkers firstly suggested that inhibition ofmacrophage
VDR signalling in atherosclerotic mice also suppressed the
RAAS [100]. Further studies by Ish-Shalom and colleagues
andWeng and coworkers have recently supported these find-
ings inmice [148, 149]. In addition, the discovery of fibroblast
growth factor (FGF)23/klotho axis has also broadened the
potential role of vitamin D on the endocrine signalling in the
pathogenesis of atherosclerosis. FGF23 was shown to act as
counterregulatory hormone of vitamin D, suppressing both
renal and extrarenal synthesis of CYP27B1 as well as enhanc-
ing the expression of catabolic enzyme CYP24A1. FGF23 is
also a well-recognized risk factor for CV diseases and CV
mortality [150, 151]. In addition, evidence of its direct role
in promoting atherosclerosis also in patients with preserved
renal function was also demonstrated [152]. Although the
molecular mechanisms underlying both FGF23 and vitamin
D still require to be clarified [153], recent pathophysiological
studies have shown potential biphasic cardiovascular effects
of these mediators in atherogenesis associated with chronic
renal diseases [154].

5. Conclusions

In the last decades, the scientific debate on the CV effects of
vitamin D system and the potential CV risk associated with
its deficiency raised controversial findings [155]. Even if the
results from the first randomized clinical trials were discour-
aging, these studies were not considered conclusive at all, due
to limitations in study design and different compounds
administered. Poor stratification by age, race, geographic
position, physical activity, and sunlight exposure were the
main confounding factors, in addition to the small sample
size of cohorts. Moreover, the current definitions of the
optimal vitamin D level in humans are bone-driven and not
assessed from a cardiovascular point of view. In addition,
the different compounds used for vitaminD supplementation
(comprising both inactive forms of vitaminDanddirectVDR
agonists) may affect the reliability of these results.

On the other hand, the contribution of the local activated
vitamin D system within atherosclerotic plaque has not been
appropriately investigated yet. Therefore, both basic research
studies and clinical trials are needed for better elucidating
the therapeutic and pathophysiological role of vitamin D in
atherogenesis and CV diseases.
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