
Pediatric Obesity and Vitamin D Deficiency: A Proteomic
Approach Identifies Multimeric Adiponectin as a Key Link
between These Conditions
Gillian E. Walker1*, Roberta Ricotti2, Marta Roccio1, Stefania Moia1, Simonetta Bellone2, Flavia Prodam2.,

Gianni Bona
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Abstract

Key circulating molecules that link vitamin D (VD) to pediatric obesity and its co-morbidities remain unclear. Using a
proteomic approach, our objective was to identify key molecules in obese children dichotomized according to 25OH-
vitamin D (25OHD) levels. A total of 42 obese children (M/F = 18/24) were divided according to their 25OHD3 levels into
25OHD3 deficient (VDD; n = 18; 25OHD,15 ng/ml) or normal subjects (NVD; n = 24; .30 ng/ml). Plasma proteomic analyses
by two dimensional (2D)-electrophoresis were performed at baseline in all subjects. VDD subjects underwent a 12mo
treatment with 3000 IU vitamin D3 once a week to confirm the proteomic analyses. The proteomic analyses identified 53
‘‘spots’’ that differed between VDD and NVD (p,0.05), amongst which adiponectin was identified. Adiponectin was selected
for confirmational studies due to its tight association with obesity and diabetes mellitus. Western Immunoblot (WIB)
analyses of 2D-gels demonstrated a downregulation of adiponectin in VDD subjects, which was confirmed in the plasma
from VDD with respect to NVD subjects (p,0.035) and increased following 12mo vitamin D3 supplementation in VDD
subjects (p,0.02). High molecular weight (HMW) adiponectin, a surrogate indicator of insulin sensitivity, was significantly
lower in VDD subjects (p,0.02) and improved with vitamin D3 supplementation (p,0.042). A direct effect in vitro of 1a,25-
(OH)2D3 on adipocyte adiponectin synthesis was demonstrated, with adiponectin and its multimeric forms upregulated,
even at low pharmacological doses (1029 M) of 1a,25-(OH)2D3. This upregulation was paralleled by the adiponectin
interactive protein, DsbA-L, suggesting that the VD regulation of adiponectin involves post-transciptional events. Using a
proteomic approach, multimeric adiponectin has been identified as a key plasma protein that links VDD to pediatric obesity.
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Introduction

As with obesity, vitamin D (VD) deficiency is reaching epidemic

proportions worldwide, in both pediatric as well as adult

populations [1]. Evidence is accumulating to suggest that there

is a potential link between obesity and VD deficiency among

global populations [2,3]. Beyond vitamin D’s historic role in bone

mineralization to its more recent association with allergy

development [1,4], reports to date have linked VD deficiency to

hypertension, diabetes mellitus and insulin resistance (IR), non-

alcoholic fatty liver disease (NAFLD) and the metabolic syndrome

[1,3,5–11]. Consequently, VD deficiency may no longer be a

condition but rather a mediator of metabolic diseases responsible

for the long-term health outcomes of obese children.

Vitamin D is a group of fat soluble prohormones, with the two

major forms being ergocalciferol (VD2) and cholecalciferol

(VD3)[2,3]. In vivo, VD3 and VD2 are metabolized by the liver

to produce 25-dihydroxyvitamin D3 (25-OHD3) or 25-OHD2.

These metabolites are then further metabolized by the kidney to

produce the bioactive forms 1a,25-(OH)2D3 and 1a,25-(OH)2D2.

The bioactive form of VD3, 1a25-dihydroxyvitamin D3 (1a,25-

(OH)2D3), functions as a pleiotropic hormone controlling gene

expression in numerous cell types and tissues regulating prolifer-

ation, differentiation and cell survival [1]. These activities are

achieved principally via the cytosolic/nuclear vitamin D receptor

(VDR) signal-transduction pathways and VD responsive elements

(VDRE) found on numerous key genes, with rapid responses

occurring via VDR localized in the plasma and endoplasmic

reticulum (ER) membranes [12]. The VDR has been found in

more than 40 tissues including pancreatic beta-cells, smooth

muscle cells, monocytes and adipocytes [13]. As such, it is

hypothesized that VD deficiency could lead to complex disease

phenotypes, including obesity.

Excess body fat is associated with an increased risk of

suboptimal VD status [3,14]. It is, however, unclear as to whether

poor VD status is a consequence of obesity or is actively involved

in its development [1–3]. Until now, data regarding the role of VD

are inconclusive as the majority of results are derived from
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association studies, with intervention and longitudinal studies

lacking [15]. Cross-sectional studies have principally focused on

classical cardiovascular risk factors such as blood pressure, fasting

glucose and lipids in both adults and children [11,16], with studies

in pediatric subjects revealing that different VD cut-offs relate to

specific cardiovascular outcomes [11,17]. While respecting that a

role exists, the links between VD and obesity remain to be

elucidated.

In the search for biomarkers that are representative of

individual disease states, proteomic analyses can evaluate globally

expressed and activated protein pathways in both physiological

and pathological conditions. A proteomic approach can differen-

tiate phenotypes of diseases as well as investigate mechanisms for

target therapies. Recently, a proteomic study conducted in adult

obesity revealed that VD binding globulin could be a marker of

changes in body fat mass [18]. As such, to investigate a functional

relationship between VD status and pediatric obesity, the aim of

this study was to firstly using a proteomic approach, target

potential plasmatic biomarkers that could link VD deficiency to

pediatric obesity. The second aim was to then verify that such

markers could be modulated by VD supplementation in vivo, and

finally to confirm such effects in vitro and shed light as to the

biological mechanisms involved in the direct effect of 1a,25-

(OH)2D3.

Subjects and Methods

Subjects
In this study, we recruited consecutively 97 children and

adolescents aged between 5–18 yrs referred to the Pediatric

Endocrine Service of the ‘‘Ospedale Maggiore della Carità’’ in

relation to obesity from October 2009. Subjects were eligible if

they were healthy, had a body mass index (BMI) that exceeded the

95th percentile according to the Italian growth charts [19], were

diet-naı̈ve and presented 25-OHD3 levels ,15.0 ng/ml (deficien-

cy; VDD) or .30 ng/ml (sufficiency; NVD). The level of 15.0 ng/

ml 25-OHD3 was chosen as it represents the value below which

cardiovascular risk factors are significantly associated to 25-OHD3

in children and adolescents, as described by the National Health

and Nutrition Examination Survey [10], as well as in adults [16].

Subjects with intermediate 25-OHD3 levels (15.0–30.0 ng/ml)

were excluded from the study to avoid the potential interference of

VD hypovitaminosis. Exclusion criteria included the presence of

diabetes mellitus, the use of pharmaceuticals which could influence

glucose and lipid metabolism, blood pressure or appetite, as well as

endocrine or genetic obesity, or a low birth weight.

The protocol was conducted in accordance with the declaration

of Helsinki of 1975 as revised in 1983 and was approved by a

Local Ethic Committee (Ethics Committee AOU ‘‘Maggiore della

Carità’’ di Novara, ASL BI, ASL NO, ASL VC ASL VCO;

protocol 199/CE; study CE 14/11; www.maggioreosp.novara.it).

A written informed consent was obtained by all parents before the

evaluations where the purpose of the study was carefully

explained.

Anthropometric and biochemical measurements
All the subjects underwent a clinical evaluation using the Italian

growth charts [19]. Subjects which were assigned to VDD (n = 18),

were evaluated at baseline and after 6–12mo. Each received 3000

IU cholecalciferol (VD3) once a week (corresponding at about 400

IU daily) according to the recommendations American Academy

of Pediatrics 2008 [20].

Pubertal stages were determined by an assigned group of

trained physicians, using the criteria of Marshall and Tanner [21].

Height was measured to the nearest 0.1 cm by the Harpenden

stadiometer and weight with light clothing to the 0.1 kg by using a

manual scale. BMI was calculated as body weight divided by

squared height (kg/m2). BMI standard deviation score (BMISDS)

was calculated with the LMS method [19]. Waist circumference

(WC) was measured at the high point of the iliac crest around the

abdomen and was recorded to 0.1 cm. Systolic (SBP) and diastolic

(DBP) blood pressure were measured three times on the left arm

after 15 min at rest in the supine position and prior to other

physical evaluations, by using a standard mercury sphygmoma-

nometer; the average was used for analyses.

After a 12 h overnight fast, morning blood samples for

proteomic analyses, glucose, insulin and 25-OHD3 were obtained.

All subjects underwent an OGTT (1.75 g of glucose solution per

kg, maximum 75 g). Insulin resistance and sensitivity were

calculated using the formula of HOMA-IR and Matsuda index,

respectively. Glucose was expressed in mg/dl (1 mg/

dl:0,05551 mMol/liter) and insulin in mUI/ml (1 mUI/

ml = 7.175 pmol/l). All measurements were performed using

standardized methods in the hospital’s analysis laboratory.

Vitamin D as 25OHD3 serum levels (ng/ml) were assayed by a

direct competitive chemiluminescent immunoassay with a CV

value of 4% (LiaisonH Test 25OHD total, DiaSorin Inc, Stillwater

MN-USA). Human total adiponectin (mg/ml) was measured by the

method of ELISA according to the manufacturer’s instructions

(AdipoGen Inc, Incheon, Korea), with the intra-assay and inter-

assay coefficients of variation 3.8% and 5.5%, respectively. The

sensitivity of the assay was 0.0001 mg/ml. Human unacylated

ghrelin (pg/ml) was also measured by ELISA (BioVendor, Brno,

Czech Republic), with the intra-assay and inter-assay coefficients

of variation 4.4% and 4.5%, respectively. The sensitivity of the

assay was ,5 pg/ml. Formulas and other assays were previously

described [22].

2D-Electrophoresis
To prepare platelet-free plasma for 2D-electrophoresis, all

samples were centrifuged at 1300 rpm, 4C for 10 min followed by

a further centrifugation at 2400rcf 4uC for 15 min, with storage at

–80uC. Plasma protein concentrations were determined by using

the DC Protein Assay (BioRad, Hercules, CA). To reduce

biological variation in the proteomic analysis, as described by

Mischak et al., 2010 [23], a minimum of 12 samples per group was

delineated. For the 1st dimension, equal volumes of plasma within

the range of 50 ug of protein per analysis, were re-suspended in

rehydration buffer, according to the method of de Roos et al.,

2008 [24] and loaded onto a 7 cm immobilized pH gradient (IPG)

3–10 strip for an overnight (O/N) active in-gel rehydration

(BioRad). Isoelectric focusing (IEF) was performed at 20uC with a

Protean IEF Cell (BioRad) using a total of 10,000 V/h with a

maximum of 8,000 V. For the 2nd-dimensional separation, the

IPG strips were soaked, firstly in a reduction equilibration buffer

(6 M Urea, 2%SDS, 0.375 M Tris-HCl pH8.8, 20% glycerol 2%

w/v DTT), followed by an alkylation buffer (6 M Urea, 2%SDS,

0.375 M Tris-HCl pH8.8, 20% glycerol 2.5% w/v iodoacetamide;

BioRad). The strips were then positioned in 10% SDS-polyacryl-

amide gels (SDS-PAGE) run at 200 V for 40 min. Polyacrylamide

gels were fixed in 10% methanol, 7% acetic acid and resolved

protein spots visualized with an O/N incubation in Sypro-Ruby

fluorescent total protein stain (BioRad). All samples were evaluated

in duplicate.

Image analysis
Fluorescent images of individual gels were captured with a

ChemiDoc Imager using a 615–645 nM filter (630BP30; BioRad)

Adiponectin Links VDD to Pediatric Obesity
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and analyzed using PDQuest software (version 8.0) according to

the manufacturer’s recommendations. Briefly, the software per-

forms an automated detection and matching of spots from all gels,

calculating individual spot ‘‘volumes’’ by density/area integration

with Sypro-Ruby filtration and Gaussian modeling. To control for

slight differences in protein loading across gels, the individual spot

volumes were also normalized to the total spot volume for each

gel. For each protein spot, an average value for VDD and NVD

were compared and subjected to Student’s t-test to determine the

spots that were significantly different between the two groups.

Only those spots that showed a statistically significant difference

with a p,0.05, were chosen for PDQuest isoelectric point (pI) and

molecular weight (MW) estimations and identification.

Western immunoblot (WIB)
Independent of the experiments performed, all samples were

size-fractionated on 10% SDS-PAGE under reducing or non-

reducing (NR) conditions and electro-transferred to immuno-blot

polyvinylidene difluoride (PVDF) membrane (BioRad). For both

plasma and conditioned medium (CM) under NR and R

conditions, membranes were incubated with monoclonal anti-

adiponectin (Adipogen, Inc Incheon Korea) and detected with the

appropriate horseradish peroxidase-conjugated secondary anti-

body (Chemicon Millipore, Temecula, CA). Likewise, whole cell

lysates (WCL) were analyzed with anti-DsbA-L (Abcam, Cam-

bridge, UK) and anti-a Tubulin (Sigma). Total protein from CM

was assessed by Ponceau S staining and used for normalization

(Sigma). Immunoreactive proteins were detected using enhanced

chemiluminescence (Pierce Biotechnology, Rockford, IL) with

image capture performed using CCD-camera linked to ChemiDoc

(BioRad). Results, were quantified using QuantityOne software

with values presented as arbitrary units (AU) normalized to total

protein concentrations.

3T3-L1 cell culture and treatments
To address the direct effect of 1a,25-(OH)2D3 on adipose tissue

(AT), the well characterized murine 3T3-L1 preadipocyte cell

model was utilized (European Collection of Cell Cultures). The

preadipocytes were grown to confluency in their maintenance

medium (Dulbecco’s modified Eagle’s medium supplemented with

10% FBS and 1% penicillin/streptomycin; Sigma) at which the

cells were induced to differentiate with the addition of 500 uM

isobutylemthylxanthine (IBMX; Sigma), 25 uM dexamethasone

(DEX; Sigma) and 0.5 ug/ml insulin (Sigma) for 3 d, following

which the medium was changed to straight insulin containing

medium for an additional 3 d. To complete differentiation, the

medium was returned to maintenance medium for a further 4 d,

giving a total of 10 d for the formation of adipocytes. At this time,

the adipocytes were then placed into serum-free medium (SFM)

with an equal volume of vehicle (ethanol), or SFM with 1029 M or

1027 M 1a,25-(OH)2D3 (Sigma) and left to incubate for up to

48 h, with aliquots of conditioned medium (CM) removed at 7, 24

and 48 h. Aliquots were centrifuged at 1000 rpm at 4C and stored

at 220C prior to electrophoretic analyses. At the 48 h time point,

WCL were prepared using RIPA buffer (20 mM HEPES pH 7.4,

150 mM NaCl, 1% Triton-X 100, 1% sodium deoxycholate, 0.1%

SDS, SIGMAFAST EDTA free protease inhibitor cocktail; Sigma)

with concentrations determined using the BCA Protein Assay

(Pierce, Rockford, IL).

Statistical analysis
Data are expressed as mean 6 SEM. Skewed variables were

logarithmically transformed before analyses when necessary.

Differences between groups, treatments and in vitro studies were

compared using Mann-Whitney U or Wilcoxon test, Student’s t-

test or ANCOVA with BMISDS, age and sex as covariates, where

appropriate. Statistical significance was assumed for p,0.05. The

statistical analyses were performed with SPSS for Windows version

17.0 (SPSS; Chicago, IL).

Results

Baseline evaluations
Of the 97 original subjects, 55 were excluded because they did

not satisfy the inclusion criteria to do the proteomic analyses with

respect to their 25-OHD3 levels (VDD: ,15 ng/ml; NVD

.30 ng/ml). The final dataset included 42 participants, aged

between 5–18 yrs (18 M/24 F). Of these, 18 were classified VDD

(range: 5.40–14.20 ng/ml), with the remainder falling into the

group NVD (range: 31.20–50.0 ng/ml) without differences in

seasonal distribution of the samples. Age and Tanner stages were

similar between the two groups. Basal evaluations demonstrated

that VDD subjects were more obese, more insulin-resistant and

had higher fasting glucose and DBP, when compared to NVD.

The clinical and biochemical characteristics of VDD and NVD

are shown in Table 1.

2D-electrophoretic analysis
Plasma from both VDD and NVD subjects were analyzed by

2D-electrophoresis blinded to evaluate differences in the expres-

sion and post-translational modifications (PTM) of circulating

proteins. A global analysis using IPG 3-10 in duplicate for each

subject, identified, when corrected for Sypro-Ruby background

anomalies, 53 ‘‘spots’’ that were significantly different between the

two groups (p,0.05), with the top ten most significant spots

identified by PDQuest shown (Table 2). Of the 53 spots, 51% were

downregulated. Amongst the spots predicted to be downregulated

between VDD and NVD, was the adipokine adiponectin (ID

3050) identified using Swiss-Prot human plasma database analysis

in combination with Tagldent Searches (http://web.expasy.org)

Table 1. Basal clinical and biochemical characteristics of
subjects.

NVD (25OHD .

30 ng/mL) VDD (25OHD ,15 ng/mL)

M/F 8/16 10/8

PP/P 12/12 8/10

25OHD (ng/dl) 37.061.1 11.060.5****

BMI (Kg/m2) 25.660.7 28.361.3*

BMISDS 1.80460.100 2.09460.130***

W/H 0.5960.01 0.6260.10

SBP (mmHg) 121.463.3 122.563.1

DBP (mmHg) 79.762.1 85.262.6***

Glc0’ (mg/dl) 85.261.8 89.161.5**

Ins0’(mUI/l) 13.961.2 14.662.1

HOMA 2.960.2 3.260.5**

Matsuda index 4.4460.67 3.4760.28**

Adiponectin (AU) 8594.66578.2 7189.16383.6***

AU: arbitrary unit; BMI: body mass index; DBP: diastolic blood pressure; F:
female; Glc0’: fasting glucose; HOMA: homeostatic model assessment; Ins0’:
fasting insulin; M: male; PP: prepubertal: P: pubertal; SBP: systolic blood
pressure: * p = 0.06; ** p,0.05; *** p,0.03; **** p,0.0001.
doi:10.1371/journal.pone.0083685.t001
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with pI and MW PDQuest estimates (Figure 1). A WIB analysis of

2D-electrophoretic gels using an adiponectin specific antibody,

identified 2 adiponectin monomeric isoforms within the pI5.4/

30kDa range, providing further evidence that the original ‘‘spot’’

could be adiponectin and a PTM of adiponectin (Figure 1).

Adiponectin confirmational evaluation
Adiponectin was selected for confirmational studies due to its

strong correlation with obesity and its co-morbidities, as well as its

localization within one of the susceptibility gene loci for obesity

[25]. Two approaches were utilized to confirm the differences in

plasma adiponectin expression between VDD and NVD obese

pediatric subjects. In the first, WIB analyses of 2D-electrophoretic

gels were performed in 10 subjects from each group, with this

approach demonstrating qualitatively reduced total adiponectin in

subjects with ,15 ng/ml 25-OHD3 (VDD; Figure 2A). In the

second approach, densitometric WIB evaluations (VDD vs NVD;

71876383 vs 85946587 AU; p,0.035; Figure 2B) and ELISA

evaluations (VDD vs NVD; 6.060.8 vs 10.961.9 mg/ml; p,0.05)

of circulating total adiponectin in all subjects, further confirmed

that total adiponectin is reduced in pediatric obese subjects with

,15 ng/ml 25-OHD3 with no alteration in the significance when

corrected for BMI-SDS, age and sex.

Adiponectin circulates in plasma in three major forms: trimers/

low molecular weight (LMW), hexamers/medium-MW (MMW)

and high-MW (HMW), with the HMW form shown to be the most

bioactive, particularly with respects to insulin action [25]. To

dissect changes in the adiponectin isoforms, an evaluation using

non-reduced (NR)-WIB of plasma from both VDD and NVD

subjects was performed. While showing that HMW, MMW and

LMW forms were all significantly lower in VDD subjects, the

greatest difference was observed for HMW adiponectin (VDD vs

NVD; 697.16127.7 vs 1270.56198 AU; p,0.013; Figure 3).

VD-treatment: Clinical and adiponectin evaluations
To understand the benefits of VD3 therapy, the original 18

VDD were administered 3000 IU cholecalciferol (VD3) once a

week, for a 12mo study. Of the 18 subjects, 10 concluded the

study, while the remainders discontinued the treatment with

cholecalciferol or dropped out with clinical controls. In the 10

VDD subjects, 25-OHD3 levels increased during the course of the

treatment (10.660.6 vs 20.464.8 ng/ml; p,0.04), while DBP

(84.264.6 vs 77.563.2 mmHg) and fasting glucose (88.063.1 vs

Figure 1. Proteomic evaluation predicts adiponectin isoforms as being differentially expressed between VDD and NVD. A 2D-
electrophoretic analysis was performed in duplicate for the 42 subjects using IPG3-10, with proteins detected by Sypro Ruby staining. Spot/s
predicted to be adiponectin are indicated by the PDQuest identification number (SSP3050). Supportive evidence for the prediction was given by
performing a WIB of 2D-electrohoretic gels using anti-adiponectin antibody. Representative gels are shown.
doi:10.1371/journal.pone.0083685.g001

Table 2. Top ten most significantly modulated plasma proteins between VDD and NVD obese pediatric subjects.

PDQuest ID
VDD Media n = 18
(AU)

NVD Media n = 24
(AU) P-value VVD vs NVD MW kDa* pI* Protein ID** Accession No.

302 35.1 75.5 0.007 54 4.8 N/D*** -

601 28.9 12.7 0.008 100 3.2 N/D -

1101 30.2 20.9 0.01 39 4.8 N/D -

1103 278 348.8 0.04 40 5.2 Haptoglobin b P00738

1402 128.2 94.5 0.04 62 4.8 N/D -

2301 278.2 216.2 0.04 55 5.0 N/D*** -

3003 84.1 63.5 0.006 26 5.5 N/D -

3050 22.8 31.3 0.03 28 5.4 Adiponectin Q15848

6603 18.6 60.3 0.02 100 6.4 N/D -

7305 53.7 42.8 0.02 55 6.3 N/D -

*PDQuest estimate; ** Confirmed by WIB; N/D = not determined; *** Under investigation.
doi:10.1371/journal.pone.0083685.t002
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81.563.1 mg/dl) decreased (p,0.05) without significant changes

in other parameters or BMI (26.161.7 vs 26.362.1 Kg/m2) at 12

months. When corrected for BMISDS, age and sex, the

significance for fasting glucose was lost. To overcome the absence

of a direct measurement of fat tissue, we measured visceral

adiposity index (VAI), an indicator of visceral adiposity status and

function [26], body adiposity index (BAI), which correlates more

than BMI with the percentage of body fat measured by dual

energy X-ray absorptiometry [27] and ghrelin which increases in

case of adiposity loss [28]. Waist circumference (90.263.9 vs

91.365.3 pg/ml), waist-to-height ratio (0.6360.02 vs 0.6360.05),

VAI (1.89360.337 vs 1.85260.343), BAI (0.05660.001 vs

0.05860.002 Kg/m2), and ghrelin (106.0621.1 vs

98.1630.6 pg/ml) did not change from baseline to T12 suggesting

that fat mass did not decrease over time.

With respects to adiponectin levels, a gradual and modest, yet

significant improvement in total adiponectin was observed over

the 12mo period, as demonstrated by WIB (Figure 4A). Similar

results were also observed for the multimeric forms of adiponectin

in circulation. The NR-WIB analysis demonstrated that both the

HMW and MMW forms improved modestly yet significantly with

cholecalciferol therapy, while alterations in LMW adiponectin did

not reach significance (Figure 4B). Correction for covariates did

not modify the results.

Vitamin D3 treatment upregulates adiponectin and
disulfide bond-A oxidoreductase-like protein (DsbA-L)
promoting adiponectin multimerization in 3T3-L1 mature
adipocytes

To examine the direct effect of VD on adipocytes, the cellular

component of AT exclusively responsible for the production and

secretion of adiponectin, 3T3-L1 cells were induced to differen-

tiate into adipocytes. Adipocytes were then treated for a further

48 hr period in SFM with or w/o increasing concentrations (1029

– 1027 M) of the bioactive form of VD3, 1a,25-(OH)2D3, with

aliquots of CM removed at 7, 24 and 48 hr. A WIB analysis of

monomeric adiponectin in the CM, demonstrated a significant

increase in total adiponectin secretion with increasing concentra-

tions of 1a,25-(OH)2D3 and with respect to time (n = 4; Figure 5).

An evaluation of the secretory capacity of the cells by examining

total protein within the CM, demonstrated that secretory profile is

unchanged and as such the upregulation of adiponectin secretion/

production by 1a,25-(OH)2D3 is selective. We also observed with

the higher concentration of 1a,25-(OH)2D3, while adiponectin

accumulation in the CM continued, there was a deterioration in

cell quality and a-tubulin expression, as such the lower concen-

tration was selected for further investigations (data not shown),

with the most significant changes evident for LMW form which

increased 8-fold (p,0.01) over the time period (Figure 6). An

analysis of the adiponectin interactive protein, DsbA-L, which has

been demonstrated to promote adiponectin multimerization in

adipocytes [29,30], demonstrated a higher expression level in 3T3-

L1 adipocyte cell lysates treated with 1029 M 1a,25-(OH)2D3 for

48 hr with respect to SFM, supporting the increased multi-

merization of adiponectin following 1a,25-(OH)2D3 treatments

Figure 2. WIB of proteomic analyses and plasma samples
confirms that total adiponectin is decreased in VD deficient
pediatric obese subjects (VDD) when compared to pediatric
obese with normal VD levels (NVD). A. A WIB of 2D-electrophoretic
analyses was performed in VDD (n = 10) and NVD (n = 10) subjects using
anti-adiponectin antibody. B. A WIB analysis under reduced conditions
of total adiponectin in the plasma of representative VDD (,15 ng/ml)
and NVD (.30 ng/ml) subjects.
doi:10.1371/journal.pone.0083685.g002

Figure 3. The multimeric forms of adiponectin are reduced, in particular the HMW form, in VD deficient pediatric obese subjects. A
WIB analysis under non-reduced conditions and a quantitative densitometric analysis of the multimeric forms of adiponectin (HMW, MMW, LMW) in
the plasma of representative VDD (,15 ng/ml; n = 18) and NVD (.30 ng/ml; n = 24) subjects. Densitometric results were normalized to plasma
protein concentrations.
doi:10.1371/journal.pone.0083685.g003

Adiponectin Links VDD to Pediatric Obesity
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(Figure 6). It is important to note that while there was an overall

increase in adiponectin multimerization in treated 3T3-L1 cells,

there was a clear predominance of the LMW form in both the

basal and treated state in clear contrast to the profile present in

human plasma samples.

Discussion

Pediatric obesity is an emerging health issue in many developed

countries, with repercussions later in life. Like adult obesity, it is

conceivable that genotype, lifestyle and behavioral factors such as

energy intake together with the levels of physical activity, play

critical roles in the obesity epidemic. There is, however, now

evidence suggesting that VD may contribute to the regulation of

weight gain, particularly in association to energy-restricted diets

[3]. As such, VD status has been proposed as a promising strategy

for the prevention of obesity and the development of its associated

complications. To date though, results of clinical studies regarding

the role of VD in obesity are inconclusive, with the ‘‘concert’’ of

metabolic signaling pathways that link obesity with VD status,

undefined [15]. In the present study, we used a proteomic

approach to identify potential in vivo biomarkers that could provide

a link between VD deficiency and pediatric obesity. Using this

technology, the multimeric forms of adiponectin, in particular the

HMW form, were identified as being downregulated in obese

pediatric subjects with vitamin D deficiency which in turn could be

upregulated with VD3 supplementation, independently of BMI.

Further, a direct effect of 1a,25-(OH)2D3 on adipocytes was

demonstrated, with adiponectin and its multimeric forms, as well

as the adiponectin interactive protein, DsbA-L, upregulated by

1a,25-(OH)2D3 treatment at low pharmacological concentrations.

The cohort of children enrolled in the present study who were

VD deficient, were more obese, more insulin-resistant and had

higher fasting glucose and DBP. These data are in agreement with

those found in a larger population covering the pediatric age

[10,31]. In particular, higher fasting glucose and blood pressure

levels observed in our cohort are in line with data of 2001–2004

National Health and Nutrition Examination Survey in US

adolescents [10]. VD deficiency is common in obese patients

and it is possible that this is the result of many factors, such as a

decreased VD bioavailability due to sequestration in adipose tissue

[32], low dietary VD intake due to poor nutritional habits and

minimal sun exposure due to a sedentary indoor lifestyle [33].

Although it is known that morbid obesity is directly correlated with

higher insulin resistance, fasting glucose levels and other comor-

bidities such as hypertension, VD deficiency is associated with

numerous biomarkers of systemic inflammation and metabolic

impairment, regardless of the total fat mass [10]. Moreover, the

15 ng/ml or less of VD may be the threshold by which VD

deficiency confers negative effects on insulin sensitivity [10,34] and

also hazard ratio for cardiovascular events [17]. We showed that 1

year cholecalciferol treatment improved DPB and fasting glucose

without significant changes in terms of BMI. Although in a small

group of children, these data are in line with other observations in

some pilot studies in animals [35] and in adults [36]. As our

patients did not improve their weight, our results seem dependent

on VD without an influence of body fat changes. It has to be

underlined that our children increased VD levels at the threshold

of deficiency for bone effects [15], suggesting that pleiotropic

actions other than those on bone would be exerted at different

levels as suggested by cross sectional studies which indicate 15 ng/

ml as the cut off for the cardiovascular disease risk [10,34].

Figure 4. Total and the HMW and MMW multimeric forms of adiponectin increase in VD deficient pediatric obese subjects following
cholecalciferol supplementation for 12mo. A. A WIB analysis under reduced conditions and a quantitative densitometric analysis of total
adiponectin in the plasma of representative VDD (,15 ng/ml) and NVD (.30 ng/ml) subjects. B. A WIB analysis under non-reduced conditions and a
quantitative densitometric analysis of the multimeric forms of adiponectin in the plasma of VDD (,15 ng/ml; n = 18) and NVD (.30 ng/ml; n = 24)
subjects.
doi:10.1371/journal.pone.0083685.g004
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To explore the ‘‘concert’’ of metabolic signaling pathways

which underlie the link between VD deficiency and obesity, a 2D-

based proteomic methodology investigated the global changes in

expression levels as well as PTMs associated with VD status. In our

cohort of pediatric obese subjects divided according to their

circulating levels of 25-OHD3, adiponectin was identified and

confirmed to be significantly decreased in 25-OHD3 deficient

obese pediatric subjects. Adiponectin has been demonstrated to

have insulin-sensitizing effects [37], regulates centrally food intake

and body weight [38] and possesses cardioprotective [39], anti-

inflammatory and anti-oxidant properties [40], demonstrating that

it has a clear clinical relevance with respect to obesity and its

associated complications. Adiponectin is abundantly produced by

adipose tissue with its synthesis and secretion specific to adipocytes

[41] In contrast to other adipokines, circulating adiponectin is

negatively correlated with BMI and is decreased further in patients

with insulin resistance, type 2 diabetes and cardiovascular disease

[37]. In the present study, we observed within the pediatric obese

population a further subdivision in circulating total adiponectin

levels according to VD levels, with VD deficient subjects

presenting significantly lower levels of circulating adiponectin.

Within the circulation, adiponectin is present in three multi-

meric forms: trimer (LMW), hexamer (MMW) and HMW (12–18

monomers), with the HMW form considered to be the key

bioactive form, particularly with respect to insulin action

[25,37,42]. In the present study, we demonstrated that all

molecular weight forms were decreased in those with VD

deficiency with all analyses performed. Circulating concentrations

of adiponectin are known to be significantly decreased with the

development of obesity and with altered glycemic control with the

HMW form more strictly involved in insulin resistance [25,37,42].

From a clinical perspective it can be hypothesized that total

adiponectin and its multimeric forms were reduced in VD

deficient children because they are more obese. However, in the

present study we have shown an increase in circulating

adiponectin levels, in particular of HMW form, after 1 yr

cholecalciferol treatment. This significant improvement occurred

regardless of weight reduction, suggesting a direct role of VD. The

significantly higher levels of adiponectin could be one of the key

factors which contribute to the shown improvement of their

metabolic phenotype, as previously demonstrated by numerous

studies (for review see 36), including in children where an increase

in HMW adiponectin was shown to be correlated with an

improvement in insulin sensitivity [43,44].

With the in vivo data supporting a direct role for VD in the

regulation of adiponectin, and to confirm that VD yields an effect

on adiponectin expression, the direct effect of VD on adiponectin

secretion was tested using the murine 3T3-L1 adipocyte cell

model. It is known that nuclear and membrane VDR have been

demonstrated in a large array of tissues, including adipose tissue

[45] and is expressed in 3T3-L1 cells, with the highest expression

observed during the early stages of adipocyte differentiation where

Figure 5. Total adiponectin secretion increases in 3T3-L1 adipocytes treated with 1a,25-(OH)2D3. 3T3-L1 adipocytes, generated using a
standard differentiation protocol, at day 10 were treated with increasing concentrations of 1a,25-(OH)2D3 (1029 to 1027 M) in SFM or SFM with
vehicle for 48 h. The CM at 7, 24 and 48 h from the same treatment was analyzed by WIB under reduced condition and analyzed densitometrically for
the synthesis of adiponectin. Results were normalized to a-tubulin and are presented as fold-increase with respect to the 7 h SFM sample (n = 4).
doi:10.1371/journal.pone.0083685.g005
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VD has been shown to inhibit the differentiation process [46,47].

In the present investigation, we conferred with the clinical

observations in VD deficient pediatric obese subjects, with

adiponectin secretion and the multimeric forms increasing in

3T3-L1 mature adipocytes following 1a,25-(OH)2D3 supplemen-

tation, with significant effects observed at very low pharmacolog-

ical concentrations.

Previous studies regarding the direct effects of 1a,25-(OH)2D3

on adipose tissue are controversial with both inflammatory and

anti-inflammatory effects being reported [48–50]. Lorente-Ceb-

rián et al., [47] reported a downregulation in the secretion of total

adiponectin in human sub-cutaneous-AT (SAT) primary culture

differentiated adipocytes treated with 1a,25-(OH)2D3, with no

effect on mRNA expression. They also observed a downregulation

in the pro-inflammatory marker monocyte chemoattractant

protein-1 (MCP-1), supporting the concept of dual roles for

1a,25-(OH)2D3 in adipose tissue inflammation. A downregulation

of key pro-inflammatory markers by 1a,25-(OH)2D3 was also

demonstrated by Gao et al., [50] specifically in preadipocytes,

suggesting that the preadipocyte population is the major source of

proinflammatory mediators. A possible explanation for the

divergent results is that these studies observed their effects using

10-100-fold higher concentrations of 1a,25-(OH)2D3 than that

used in the present investigation, where we observed that such

concentrations had deleterious effects on adipocytes, most likely

through the activation of the Ca2+-mediated apoptotic pathway

[12]. Other differences between the study by Lorente-Cebrián et

al., [49] and the present investigation, is the use of adult human

female primary culture SAT adipocytes versus murine 3T3-L1

adipocytes. Further, our study was not directed solely to total

adiponectin secretion, but it also examined the multimeric

adiponectin secretory profile following 1a,25-(OH)2D3. Here we

observed an altered distribution in the CM of these cells when

compared to a human plasma profile, with a clear predominance

of the LMW form, suggesting clear species diversity with respect to

the synthesis and secretion of adiponectin. Our experiments were

also performed in SF conditions suggesting in addition to species

diversity, they may also be a dependence on other serum activators

in the regulation of adiponectin which were absent in our study.

Overall, while our in vitro data support our clinical findings, it

would be of relevance to approach our in vivo findings using human

adipocytes addressing at the same time the depot specific

differences in adiponectin secretion as previously described [51],

excluding also the sex related differences as well as those likely

present between adults and children.

While in the present study it can’t be excluded that there is a

direct effect of 1a,25-(OH)2D3 on 3T3-L1 adipocyte transcrip-

tion, it is feasible that the increased synthesis and multimerization

of adiponectin is dependent on the induction of endoplasmic

reticulum (ER) genes involved in the post-translational process of

multimerization. In fact, we observed in response to low

concentrations of 1a,25-(OH)2D3, an increase in the ER-

chaperon DsbA-L protein, a key regulator of adiponectin folding

and assembly [52], which paralleled the increase in adiponectin

synthesis and multimerization. The expression levels of DsbA-L

are regulated in response to ER-stress and have been shown to be

significantly reduced in obese subjects and mice [29,30]. While we

observed that the ratio of LMW to the MMW and HMW were

diverse to the human plasmatic profiles, most likely a result of

species diversity or the absence of a key regulatory protein/s in the

SF CM, the results are in concordance with other studies using

thiazolidinediones [53]. Taken together, these results demonstrate

that increase in adiponectin levels and multimerization by 1a,25-

(OH)2D3, may occur via post-transcription-dependent mecha-

nisms involving ER proteins, such as DsbA-L.

There are limitations in the present study. The first is the

absence of true body fat measurements through radiological

techniques. It can be speculated that adiponectin changes are due

to changes in fat mass, however our subjects did not improve their

weight in terms of BMI, which is a good surrogate measurement

for body fat in obesity [54]. Moreover, BMISDS, waist, waist-to-

height-ratio, BAI, VAI and ghrelin levels did not change,

suggesting that fat mass did not decrease. Further, it has been

demonstrated that the impairment of total and HMW-adiponectin

levels in childhood obesity is different to adult obese patients,

showing less of a relationship with body fat content [44]. Similarly,

recent placebo controlled studies in humans observed an increase

in adiponectin during VD supplementation [55,56]. Furthermore,

BAI which has been demonstrated to be a good indirect marker of

body fat percentage and is superior to BMI [27], was unchanged,

supporting the hypothesis that adiponectin is modulated by VD.

Similarly, VAI, which has been proposed to be an indirect marker

of visceral adipose dysfunction [26], remained unchanged. It has

been demonstrated that with the increase of VAI, adiponectin

progressively decreases [57]. The fact that VAI remained

unchanged and adiponectin increased in our population treated

Figure 6. The secretion of the adiponectin multimeric forms, in
particular the LMW form, in parallel with the ER-chaperon
DsbA-L, increases in 3T3-L1 adipocytes treated with 1a,25-
(OH)2D3. 3T3-L1 adipocytes, generated using a standard differentia-
tion protocol, at day 10 were treated with increasing concentrations of
1a,25-(OH)2D3 (10-9 to 10-7M) in SFM or SFM with vehicle for 48 h. The
CM at 7, 24 and 48 h from the same treatment and CL at 48 h, was
analyzed by WIB under non-reduced or reduced conditions for the
synthesis of adiponectin multimeric forms or DsbA-L with a-tubulin,
respectively.
doi:10.1371/journal.pone.0083685.g006
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with VD, provides further evidence of a direct role of VD on

adiponectin production. This is also supported by the demonstra-

tion of stable ghrelin levels, which are a precocious index of the

recovery of an ideal body weight when they increase. The second

limitation is we performed just two adiponectin evaluations after

VD treatment, with more prolonged studies and more frequent

time points needed to surely prove a connection. Despite this,

when we weighted adiponectin for cofounders, which may

influence its secretion, the significance was maintained suggesting

an influence of the VD treatment. Thirdly, this is a pilot study to

investigate whether proteins identified via a proteomic approach

are directly modulated by VD, in the case of adiponectin, an in

vitro adipose tissue model. Notably, more studies are needed in the

future to understand the biological mechanisms and whether other

proteins are implicated. In support of the findings however, a diet

rich in VD has been shown to increase adiponectin synthesis in

swine epicardial adipose tissue [58].

VD has been proposed as a promising strategy for the

prevention of obesity and the development of its associated

complications. While VD has a long history, the ‘‘concert’’ of

metabolic signaling pathways that link obesity with VD status

remain undefined. In the present study, we used a proteomic

approach to study the global plasmatic changes between VD

deficient and normal obese pediatric subjects identifying that the

multimeric forms of adiponectin, in particular the HMW form are

plasmatic biomarkers that could provide a mechanistic link

between VD deficiency and pediatric obesity, with total plasma

levels increasing with cholecalciferol supplementation. By using

the in vitro 3T3-L1 adipocyte cell model system, a direct effect of

1a,25-(OH)2D3 at low pharmacological concentrations was

demonstrated. While the mechanism of VD control over

adiponectin remains to be clearly defined, the upregulation of

the ER-chaperon DsbA-L, suggests that this may be a post-

transcriptional dependent event.
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44. Martos-Moreno GÁ, Barrios V, Martı́nez G, Hawkins F, Argente J. (2010) Effect

of weight loss on high-molecular weight adiponectin in obese children. Obesity

(Silver Spring) 18(12):2288–2294..

45. Norman AW (2006) Minireview: vitamin D receptor: new assignments for an

already busy receptor. Endocrinology 147: 5542–5548.

46. Kong J, Li YC (2006) Molecular mechanism of 1,25-dihydroxyvitamin D3

inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab 290:

E916–924.

47. Blumberg JM, Tzameli I, Astapova I, Lam FS, Flier JS, et al. (2006) Complex

role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells.

J Biol Chem 281: 11205–11213.

48. Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, et al. (2007)

Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-

Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 77:

47–57..
49. Lorente-Cebrián S, Eriksson A, Dunlop T, Mejhert N, Dahlman I, et al. (2012)

Differential effects of 1a,25-dihydroxycholecalciferol on MCP-1 and adiponectin

production in human white adipocytes. Eur J Nutr 51: 335–342.
50. Gao D, Trayhurn P, Bing C (2012) 1,25-Dihydroxyvitamin D(3) inhibits the

cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by
human preadipocytes. Int J Obes (Lond) doi: 10.1038/ijo.2012.53.

51. Walker GE, Marzullo P, Verti B, Guzzaloni G, Maestrini S, et al. (2008)

Subcutaneous abdominal adipose tissue subcompartments: potential role in
rosiglitazone effects. Obesity (Silver Spring). 16: 1983–1991.

52. Zhou L, Liu M, Zhang J, Chen H, Dong LQ, et al. (2010) DsbA-L alleviates
endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes 59:

2809–2816.
53. Liu M, Liu F (2009) Transcriptional and post-translational regulation of

adiponectin. Biochem J 425: 41–52.

54. Freedman DS, Wang J, Thornton JC, Mei Z, Sopher AB, et al. (2009)
Classification of body fatness by body mass index-for-age categories among

children. Arch Pediatr Adolesc Med. 163: 805–811.
55. Belenchia AM, Tosh AK, Hillman LS, Peterson CA. (2013) Correcting vitamin

D insufficiency improves insulin sensitivity in obese adolescents: a randomized

controlled trial. Am J Clin Nutr. 97: 774–781.
56. Breslavsky A, Frand J, Matas Z, Boaz M, Barnea Z, et al. (2013) Effect of high

doses of vitamin D on arterial properties, adiponectin, leptin and glucose
homeostasis in type 2 diabetic patients. Clin Nutr. S0261-5614(13)00047-2.

57. Petta S, Amato MC, Di Marco V, Cammà C, Pizzolanti G, et al. (2012) Visceral
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