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Abstract
Abnormal bone metabolism and dysfunction of the 
calcium-parathyroid hormone-vitamin D axis have been 
reported in patients with viral hepatitis. Some studies 
suggested a relationship between vitamin D and viral 
hepatitis. Genetic studies have provided an opportu-
nity to identify the proteins that link vitamin D to the 
pathology of viral hepatitis (i.e., the major histocom-
patibility complex class Ⅱ molecules, the vitamin D re-
ceptor, cytochrome P450, the renin-angiotensin system, 
apolipoprotein E, liver X receptor, toll-like receptor, and 
the proteins regulated by the Sp1 promoter gene). 
Vitamin D also exerts its effects on viral hepatitis via  
non-genomic factors, i.e., matrix metalloproteinase, 
endothelial vascular growth factor, prostaglandins, cy-
clooxygenase-2, and oxidative stress. In conclusion, 
vitamin D could have a beneficial role in viral hepatitis. 
Calcitriol is best used for viral hepatitis because it is the 
active form of the vitamin D3 metabolite. 
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INTRODUCTION
Abnormal bone metabolism and dysfunction of  the 
calcium-parathyroid hormone (PTH)-vitamin D axis have 
been reported in patients with viral hepatitis. In these 
patients, bone mineral density (BMD) was reduced in the 
lumbar spine and femoral neck[1-4]. The prevalence and se-
verity of  bone loss increases based on the severity of  the 
liver disease[2]. Biochemical markers of  bone resorption, 
such as urinary telopeptide (NTX) and pyridinoline, bone-
specific alkaline phosphatase, and serum levels of  PTH, 
were increased in patients with chronic viral hepatitis[1,4-9]. 
Serum insulin-like growth factor-1 (IGF-1) and 25-hy-
droxyvitamin D3 (25OHD) were lower in patients with 
viral hepatitis[1,8-10]. However, other studies demonstrated 
contradictory results with respect to bone metabolism in 
patients with chronic viral hepatitis. Osteosclerosis was 
reported in patients with hepatitis C virus (HCV) and 
was associated with normal levels of  IGF-1. It is also as-
sociated with an increased levels of  osteoproterin (OPG) 
and the ligand for receptor activator of  nuclear factor-κB 
(RANK)[11,12]. Serum levels of  PTH were lower in patients 
with HCV compared to controls[6,13]. These findings sug-
gested that there might be a relationship between vitamin 
D and viral hepatitis. In this paper, we review the role of  
vitamin D in patients with viral hepatitis.

GENETIC FACTORS RELATED TO 
VITAMIN D IN VIRAL HEPATITIS
The major histocompatibility complex (MHC) class Ⅱ 
molecules play an important role in immune functioning 
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and are essential to the body’s defense against infection. 
The human MHC class Ⅱ is encoded by three different 
isotypes, HLA-DR, HLA-DQ, and HLA-DP. Studies 
have suggested that several genes in the MHC region 
promote susceptibility to viral hepatitis. Human leukocyte 
antigen (HLA) genes, which are located in the MHC re-
gion, have been implicated in viral hepatitis susceptibility. 
HLA-DRB1*12 is significantly more common in children 
with autoimmune hepatitis with positive hepatitis A IgM 
than in children with negative hepatitis A IgM[14]. In addi-
tion, the HLA-DPA1 and HLA-DPB1 genes are known 
to be associated with hepatitis B virus (HBV) infection 
in Han Chinese, Japanese, and Thai populations[15-18]. 
However, HLA-DPA1 was not associated with the devel-
opment of  cirrhosis or hepatocellular carcinoma (HCC) 
in Han Chinese populations[19]. Genetic variants in the 
HLA-DPA1 region may also affect treatment-induced 
hepatitis B e antigen (HBeAg) sero-conversion[20]. In the 
normal human liver, mRNA expression of  HLA-DPA1 
and HLA-DPB1 are important for control of  HBV[21]. 
HLA-DRB1*1101 correlates with less severe hepatitis in 
Taiwanese male carriers of  HBV[22]. HLA-DRB1*1302 
was reported to be associated with protection against 
persistent HBV infection in Gambian populations[23]. 
In South Indian populations, a significantly higher fre-
quency of  HLA-DRB1*0701 was observed in patients 
with chronic viral illness compared with individuals who 
spontaneously recover (SR), but HLA-DRB1*0301 was 
noted to be of  higher frequency in the SR group than the 
chronic HBV group[24]. In patients from Eastern Turkey, 
DQ2 and DQ8 have been noted to be markedly higher 
in patients with chronic HBV than those with SR[25]. The 
presence of  DQw1 may protect against chronic active 
HBV infection[26]. In addition, patients with chronic HBV 
infection and the DQB1*0303 and DRB1*08 haplotypes 
may be less responsive to interferon alpha (IFNα) treat-
ment[27]. Moreover, DRB1*11, DRB1*0301, and DRB1*04 
were found to confer a significant protective advantage 
against HCV infection[28-31]. These alleles might be re-
sponsible for the selection of  viral epitopes for presenta-
tion to CD4+ T cells, leading to a more efficient immune 
response against the virus. In a meta-analysis study, both 
DQB1*0301 and DRB1*1101 were protective alleles and 
presented HCV epitopes more effectively to CD4+ T lym-
phocytes than other epitopes, Indeed, subjects with these 
two alleles were at a lower risk of  developing chronic 
HCV infection[32]. On the other hand, calcitriol is known 
to stimulate phagocytosis but suppresses MHC class 
Ⅱ antigen expression in human mononuclear phago-
cytes[33,34]. In peripheral blood leukocytes, the expression 
of  HLA-DR decreased after calcitriol administration in 
renal transplant recipients[35]. Calcitriol also decreases 
interferon-gamma-induced HLA-DR antigen expression 
on normal and transformed human keratinocytes and 
cultured epithelial tumor cell lines[35,36]. Both DR and DQ 
protein levels on the surface of  a myeloma cell line were 
decreased after calcitriol treatment[37]. Moreover, calcitriol 
inhibits the expression of  all three subtypes of  MHC 

class Ⅱ antigens (HLA-DR, HL-ADP, and HLA-DQ) 
as well as the accessory activity of  monocytes, both in a 
dose- and time-dependent manner[38]. These findings sug-
gest that calcitriol may have an impact on viral hepatitis 
by suppressing the expression of  MHC class Ⅱ antigens. 

Genetic studies provide an opportunity to link molec-
ular variations with epidemiological data. DNA sequence 
variations, such as polymorphisms, exert both modest 
and subtle biological effects. Vitamin D exerts immuno-
modulatory and anti-proliferative effects through the 
vitamin D receptor (VDR) in numerous diseases. VDR 
gene polymorphisms are reported to be associated with 
distinct clinical phenotypes in Taiwanese hepatitis B virus 
(HBV) carriers[39]. There is an association between Taq1 
and Fok1 polymorphisms of  VDR and HBV outcomes 
in Chinese patients[40]. The tt genotype of  VDR polymor-
phism is linked to persistent HBV infection in African 
patients[41]. Polymorphisms in the TT allele of  exon 9 of  
VDR are associated with occult HBV infection in Iranian 
patients[42]. Significant differences in the frequency of  the 
allelic distribution of  the Apa1 of  VDR are reported to 
occur more frequently in patients with HBV complicated 
by severe liver disease as well as those with higher viral 
loads[43]. These observations suggest that alterations in 
VDR function may play a role in viral hepatitis.

The cytochrome P450 (CYP) system is responsible 
for the oxidation, peroxidation, and/or reduction of  
vitamins and for the metabolism of  steroids, xenobiot-
ics, and various drugs. The CYP27B1-1260 promoter 
polymorphism has been reported to be associated with 
vitamin D deficiency and an increased risk of  fracture 
in the elderly[44]. Reduced 25OHD levels associated with 
the CYP27B1-1260 promoter polymorphism results in 
reduced 1,25OHD levels and are associated with failure 
to achieve sustained virologic response (SVR) in patients 
with hepatitis C virus (HCV) genotypes 1, 2, and 3[45]. 
In Huh7.5 hepatoma cells, HCV infection increased cal-
citriol production by inhibiting CYP24A1 induction, the 
enzyme responsible for the first step in calcitriol catabo-
lism[46]. CYP24A1 methylation tended to correlate with 
better prognosis in HCV-related HCC[47].

The primary function of  the renin-angiotensin system 
(RAS) is to maintain fluid homeostasis and regulate blood 
pressure. Angiotensin converting enzyme (ACE) is a key 
enzyme in the RAS and converts angiotensin (AT) Ⅰ to 
the potent vasoconstrictor AT Ⅱ[48]. Hepatic stellate cells 
(HSCs) are recognized as the main collagen-producing 
cells in injured hepatic tissue. Angiotensin Ⅱ (AT Ⅱ) 
mediates key biological actions involved in hepatic tissue 
repair, including myofibroblast proliferation, infiltration 
of  inflammatory cells, and collagen synthesis. Activated 
HSCs secrete AT Ⅱ[49]. ACE2 expression is significantly 
increased in the context of  liver injury, in both humans 
and rats[50]. In addition, AT Ⅱ levels are much higher in 
patients with HBV when compared to controls. These 
levels were directly related to the severity of  the illness 
and decrease markedly with captopril, which is an ACE 
inhibitor[51]. A statistically significant correlation has been 
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noted between polymorphisms in the promoter region of  
the AT gene and the development of  progressive hepatic 
fibrosis in patients with chronic HCV[52]. In recurrent 
hepatitis C infection, male liver recipients who were carri-
ers of  the D allele of  ACE appeared to gain more weight 
after liver transplantation; in female recipients, however, 
carriers of  the D allele appear to experience more severe 
allograft fibrosis[53]. Losartan, an AT1 receptor blocker, 
attenuates liver fibrosis in experimental models and in pa-
tients with chronic hepatitis C and significantly decreases 
the expression of  several profibrogenic and NADPH 
oxidase (NOX) genes[54]. The administration of  AT-
blocking agents reduced the development of  graft fibro-
sis in hepatitis C recurrence after liver transplantation[55]. 
However, there is also an interaction between vitamin D 
and the RAS. The combination of  ACE inhibitors with 
the ACE DD genotype has been shown to decrease the 
level of  calcitriol[56]. In Turkish populations of  hyperten-
sive patients, the presence of  the ACE D allele is associ-
ated with a higher risk of  left ventricular mass index and 
ambulatory blood pressure measurement, which is nega-
tively correlated with serum 25OHD levels[57]. In addi-
tion, genetic disruptions of  the VDR gene result in over-
stimulation of  the RAS, resulting in increased renin and 
AT Ⅱ productions and subsequently leading to elevated 
blood pressure and cardiac hypertrophy. Treatment with 
captopril reduced cardiac hypertrophy in VDR knockout 
mice[58], suggesting that calcitriol could function as an 
hormonal suppressor of  renin biosynthesis. Moreover, 
calcitriol suppresses renin gene transcription by blocking 
the activity of  the cyclic AMP response element in the 
renin core promoter[59] and decreases ACE activity in bo-
vine endothelial cells[60].

Apolipoprotein E (ApoE) is critical to systemic and 
local lipid transport and is a major genetic factor in viral 
hepatitis. The hepatitis virus is associated with serum 
lipoproteins, including ApoE and ApoB, and may enter 
cells via the low-density lipoprotein receptor (LDL-R). In 
in vitro models, the co-culture of  hepatocytes with liver 
sinusoidal endothelial cells (LSEC) significantly increases 
the ability of  hepatocytes to uptake low-density lipopro-
tein (LDL) and also results in a high level of  HCV-like 
particle uptake[61]. The cell surface expression of  LDL-R 
has been reported to correlate well with LDL-cholesterol 
and HCV-viral load[62]. ApoE antibody can block both 
HCV entry an the knockdown of  the LDL-R reduced 
HCV infection of  cells[63]. Human ApoE is required for 
the infectivity and assembly of  HCV[64,65]. The ApoE ε4 al-
lele protects against severe liver disease caused by HCV[66], 
while ApoE ε3 is associated with persistent HCV infec-
tion[67]. In addition, patients with chronic hepatitis C who 
do not carrying an ApoE ε3 allele, as well as carriers of  a 
single ApoE ε3 allele with a serum cholesterol concentra-
tion over 190 mg/dL, were more likely to have a favorable 
outcome[68]. Moreover, lipoprotein abnormalities found 
in the early phases of  acute hepatitis; low levels of  serum 
cholesterol and ApoA associated with the severity of  
liver cell injury in chronic liver disease[69]. The nonstruc-

tural protein 5A (NS5A) of  the HCV has been shown to 
interact with ApoA1

[70]. A decreased level of  ApoA1 was 
found in the LDL fractions of  HCV-infected patients; 
the specific siRNA-mediated down-regulation of  ApoA1 
led to a reduction in both HCV RNA and viral particle 
levels in culture[71]. On the other hand, the ApoE4 allele 
is reported to be associated with decreased bone mass in 
postmenopausal Japanese women[72]. The common ApoE 
polymorphism has a complex effect on bone metabolism 
in peri-menopausal Danish women: those with ApoE2 
have lower bone mineral losses in the femoral neck and 
hip region than other women, whereas those with ApoE4 
gain more bone mineral than other women[73]. Calcitriol 
has been shown to induce macrophages to exhibit specific 
saturable receptors for LDL and acetyl-LDL; the LDL 
receptor of  1,25OHD-induced macrophages has been 
found to exhibit specificity for ApoB and E-containing 
lipoproteins[74]. In ApoE knockout mice, an animal model 
of  dyslipidemia, high oxidative stress, and pronounced 
atherosclerosis after unilateral nephrectomy, animals de-
veloped less plaque growth and calcification with vitamin 
D analog treatment (paricalcitol) compared to healthy 
controls[75,76]. ApoE ε4, however, is associated with higher 
serum 25OHD levels[77]. Moreover, hypovitaminosis D is 
associated with reductions in serum ApoA1

[78] and a highly 
significant positive correlation was found between serum 
concentrations of  25OHD and ApoA1

[79]. In addition, cal-
citriol was reported to suppress ApoA1 gene expression at 
the transcriptional level in hepatocytes[80].

Lipids have been shown to play important roles in the 
viral life cycle and pathogenesis of  infection. HBV infec-
tion of  primary hepatocyte cultures is dependent on the 
presence of  cholesterol in the viral envelope. The extrac-
tion of  cholesterol from HBV purified from the plasma 
of  HBV-infected patients leads to a strongly reduced 
level of  infection, whereas infectivity is only regained by 
adding cholesterol back[81]. A number of  lipid metabolic 
pathways were disrupted by HCV infection, resulting 
in an increase in cholesterol and sphingolipid levels[82]. 
Higher serum triglycerides, total cholesterol and LDL 
levels were correlated with higher HCV RNA levels[83]. 
Ceestatin, a novel small molecule inhibitor of  hepatitis 
C virus replication, inhibits 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase in a dose-dependent 
manner[84]. Polyunsaturated liposomes are reported to be 
antiviral against hepatitis B and C viruses by decreasing 
cholesterol levels in infected cells[85]. Moreover, HCV and 
HBV X protein increases the hepatic lipogenesis is medi-
ated predominantly by the liver X receptor (LXR)[86-88]. 
LDL receptor-related protein 5 (LRP5) is essential for 
normal cholesterol and glucose metabolism. Mice lack-
ing LRP5 develop both increased plasma cholesterol 
levels when fed a high-fat diet markedly impaired glucose 
tolerance when fed a normal diet[89]. HCV core protein 
activates Wnt/β-catenin signaling molecules, such as 
LRP5/6 co-receptors[90], whereas calcitriol regulates the 
expression of  LRP5 via DNA sequences elements located 
downstream of  the transcription start site[91]. Notably, 
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mRNA by more than 80%; consequently, the protein 
expression of  this antimicrobial agent was reduced by ap-
proximately 70%[118]. 

The HBV major surface antigen promoter contains 
four functional transcription factor Sp1 binding sites, 
which likely contribute to the level of  expression from 
this promoter during viral infection[120-122]. HCV-core pro-
tein functions as a positive regulator of  IGF-Ⅱ transcrip-
tion via the protein kinase C (PKC) pathway, and Sp1 and 
Egr1 are direct targets of  the transcriptional regulation 
of  the IGF-Ⅱ, which plays an important role in HCV 
pathogenesis during the formation of  HCC[122,123]. Steato-
sis is an important clinical manifestation of  HCV infec-
tion. Sp1 is involved in sterol regulatory element-binding 
protein-1c (SREBP-1c) activation, which activates the 
transcription of  lipogenic genes by HCV-3a NSSA[124]. 
Moreover, Sp1 might participate in triggering HCV core 
protein up-regulation of  the extracellular matrix metal-
loproteinase (MMP) inducer expression and progression 
of  metastasis[125]. On the other hand, binding sites for 
the transcription factor Sp1 have been implicated in the 
hormone-dependent transcription of  several genes. In 
cultured human fibroblasts, the level of  CYP24 (25-OHD 
24-hydroxylase) mRNA plays a key role in the me-
tabolism of  1,25OHD and increases responsiveness to 
calcitriol by 20  000-fold. Two vitamin D-responsive ele-
ments (VDREs) located upstream of  the CYP24 gene are 
primarily responsible increased mRNA levels, and Sp1 
has been noted to act synergistically with these VDREs 
in this induction[126]. The mVDR promoter is controlled 
by Sp1 sites[127] and functions as the transactivation 
component of  the VDR/Sp1 complex to trigger gene 
expression[128]. Moreover, the genes encoding Sp1, VDR, 
the locus for the vitamin D-dependent rickets type Ⅰ, 
and hepatitis B virus-positive hepatocellular carcinomas 
from Thai patients were mapped to human chromosome 
12q[129,130]. 

THE NON-GENETIC ROLE OF VITAMIN D 
IN HEPATITIS
A high prevalence of  vitamin D deficiency was reported 
in HCV patients[10,131]. Low serum 25OHD levels are also 
found in patients with human immuno-deficient virus 
(HIV) and HCV and are correlated with severe liver 
fibrosis[132,133]. Preparations containing vitamin D3 were 
shown to be effective in reducing the severity of  the 
syndrome associated with osteo-arthropathy, including a 
decrease in BMD in Ukrainians with chronic hepatitis B 
and C[134]. The combination of  vitamin A (25  000 IU) and 
vitamin D2 (2500 IU) enhances the re-vaccination reac-
tion against HBV in Chinese children[135]. In vitro, vitamin 
D2 is reported to inhibit HCV RNA replication and its 
combination with β-carotene and linoleic acid also causes 
an additive and/or synergistic effect with respect to HCV 
RNA replication[136]. VDR mRNA and protein were 
found in the rat liver throughout the animal’s life span[137]. 
In another study, however, human and mouse hepato-

high serum 25OHD concentrations are associated with 
a favorable serum lipid profile, e.g., total cholesterol and 
high-density cholesterol (HDL-C)[92]. Low levels of  ac-
tive vitamin D (calcitriol) are also associated with low 
HDL-C levels[93]. Moreover, calcitriol has been shown to 
suppress foam cell formation by reducing acetylated LDL 
(AcLDL) and oxidized LDL (oxLDL) cholesterol uptake 
by macrophages[94]. In addition, calcitriol also inhibits the 
activity of  HMG-CoA reductase, an enzyme required for 
cholesterol biosynthesis[95]. In male VDR knockout mice, 
serum total cholesterol and LXRβ levels were significant-
ly higher than those in wild type mice[96]. The crosstalk 
between LXRα and VDR signaling in the regulation of  
bile acid metabolism suggests a possible contribution of  
the VDR to the modulation of  bile acid and cholesterol 
homeostasis[97]. 

Toll-like receptors (TLRs) are a group of  glycopro-
teins that functions as surface trans-membrane receptors 
and are involved in innate immune responses to exog-
enous pathogenic microorganisms. Substantial evidence 
supports an important role for TLRs in the pathogenesis 
and outcomes of  viral hepatitis. There is a correlation 
between hypo-responsiveness to TLR ligands and liver 
dysfunction in HCV infection[98]. The disruption of  
TLR-3, TLR-7, and TLR-9 signaling was reported in viral 
hepatitis[99-101]. In vivo, TLR signaling also inhibits HBV 
replication[102]. TLR-2 polymorphisms that impair the 
recognition of  HCV core and nonstructure 3 proteins 
may be associated with allograft failure and mortality 
after liver transplantation for chronic HCV[103,104]. These 
polymorphisms affect HCV viral loads and increase the 
risk of  HCC in patients infected with HCV genotype 
1[105]. The TLR-3 polymorphism may predispose Asian 
Indian populations to HCV infection[106] and protect Han 
Chinese populations from HBV recurrence after liver 
transplantation[107]. TLR-7 polymorphisms are protective 
against from development of  inflammation and fibrosis 
in male patients with chronic HCV infection and are pre-
dictive of  the response to IFN treatment[108-110]. TLR-2 
and TLR-4 polymorphisms are not associated with liver 
cirrhosis in HCV infected Korean patients[111]. RNA lev-
els of  TLRs 2, 4, 6, 7, 8, 9 and 10 were up-regulated in 
both the monocytes and T cells of  HCV-infected patients 
when compared to controls[112,113]. In obese rats, vitamin 
D deficiency increases the expression of  hepatic mRNA 
levels of  TLR-2, TLR-4, and TLR-9[114]. However, cal-
citriol is also known to suppress the expression of  the 
TLR-2 and TLR-4 protein and mRNA in human mono-
cytes; it also triggers hypo-responsiveness to pathogen-
associated molecular patterns[115]. Calcitriol has also been 
shown to down-regulate intracellular TLR-2, TLR-4 and 
TLR-9 expression in human monocytes[116]. TLR activa-
tion results in the expression of  VDR and 1α-vitamin D 
hydroxylase in human monocytes[117]. Calcitriol can cause 
vitamin D-induced expression of  cathelicidin in bronchi-
al epithelial cells[118] and may enhance the production of  
cathelicidin LL-37[119]. The addition of  a VDR antagonist 
has been shown to inhibit the induction of  cathelicidin 
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cytes were found to have very low nuclear VDR (nVDR) 
mRNA and protein levels, whereas the sinusoidal endo-
thelial, Kupffer, and stellate cells of  the normal rat liver 
as well as a mouse biliary cell line clearly expressed the 
nVDR gene transcript[138]. Vitamin D3 dramatically in-
hibits HCV production in Huh7.5 hepatoma cells and in 
combination with INF-α, also synergistically suppresses 
HCV production in human hepatocytes[47]. Serum vita-
min D levels are complimentary to the IL-28B polymor-
phism in enhancing the accurate prediction of  the SVR 
in patients undergoing treatment for chronic HCV[139]. 
Low vitamin D is linked to severe liver fibrosis and low 
SVR in response to IFN-based therapy in genotype 1 
chronic HCV patients[10]. Vitamin D supplementation 
also improves SVR in chronic HCV-naïve patients[140] and 
in response to antiviral treatment for recurrent HCV in-
fection in liver transplant patients[141]. These findings sug-
gest that vitamin D may play a role in the treatment of  
HCV. Chronic infection with viral hepatitis is a major risk 
factor worldwide for the development of  HCC. Vitamin 
D analogs have been reported to reduce tumor volume in 
patients with inoperable HCC[142] and to increase apop-
tosis of  hepatocarcinoma cells by 21.4%[143]. In another 
pilot study, an intra-arterial injection of  calcitriol in lipi-
odol into the hepatic artery was given to eight refractory 
HCC patients and led to the stabilization of  α-fetoprotein 
levels[144]. 

MMPs are proteolytic enzymes that are responsible 
for extracellular matrix remodeling and the regulation 
of  leukocyte migration through the extracellular matrix, 
which is important step for inflammatory processes 
and infectious diseases. MMPs are produced by many 
cell types including lymphocytes, granulocytes, astro-
cytes and activated macrophages. During the course of  
chronic HCV infection, hepatic mRNA expression of  
MMPs has been shown to either increase steadily with 
disease progression (MMP-1, MMP-2, MMP-7, and 
MMP-14) or increase transiently (MMP-9, MMP-11, and 
MMP-13), depending on the type of  MMP[145]. Serum 
and tissue MMP-9 expression were reported to decrease 
in chronic HCV patients treated with pegylated INF-
α2b and ribavirin[146]. The ratio of  MMP-9 to MMP-2 is 
useful in distinguishing between patients with early stage 
and advanced HCC[147]. Serum TIMP-1 levels decreased 
significantly during and after treatment in sustained 
responders[148]. MMP-3 polymorphisms are associated 
with persistent HBV infection and advanced liver cir-
rhosis in Korean populations[149,150]. MMP-1, MMP-3, and 
MMP-9 polymorphisms are associated with the progres-
sion of  HCV-related chronic liver disease in Japanese 
populations and may be a risk factor for poor prognosis 
in HCC patients[151,152]. However, VDR knock-out mice 
demonstrated an increased influx of  inflammatory cells, 
phospho-acetylation of  NF-κB associated with increased 
pro-inflammatory cells, and up-regulation of  MMP-2, 
MMP-9, and MMP-12 in the lung[153]. The VDR TaqI 
polymorphism is associated with a decreased production 
of  TIMP-1, which is a natural inhibitor of  MMP-9[154]. 

Calcitriol modulates tissue MMP expression under ex-
perimental conditions[155], down-regulates MMP-9 levels 
in keratinocytes, and may attenuate the deleterious effects 
caused by the excessive TNF-α-induced proteolytic activ-
ity associated with cutaneous inflammation[156]. Calcitriol 
inhibits both basal and the staphylococcus-stimulated 
production of  MMP-9 in human blood monocytes and 
alveolar macrophages[157]. Moreover, a vitamin D analog 
was also reported to reduce the expression of  MMP-2, 
MMP-9, vascular endothelial growth factor (VEGF) and 
PTH-related peptide in Lewis lung carcinoma cells[158]. 
Furthermore, calcitriol significantly attenuated Mycobac-
terium tuberculosis (M. tuberculosis)-induced increases in the 
expression of  MMP-7 and MMP-10, while suppress-
ing the secretion of  MMP-7 by M. tuberculosis-infected 
PBMCs. MMP-9 gene expression, secretion and activ-
ity were significantly inhibited, irrespective of  infection 
status[159]. Calcitriol also suppressed the production of  
MMPs (MMP-7 and MMP-9) and enhanced the level of  
TIMP-1 in tuberculosis patients[160]. In human articular 
chondrocytes, calcitriol significantly suppresses the in-
creased production of  MMP-9 that is induced by phorbol 
myristate acetate (PMA)[161]. These studies suggest that 
calcitriol may play an important role in the pathological 
process of  viral hepatitis by down-regulating the levels of  
MMPs and regulating the levels of  TIMPs. 

Angiogenesis is a complex process involving the co-
ordinated steps of  endothelial cell activation, prolifera-
tion, migration, tube formation and capillary sprouting, 
which require the participation of  intracellular signaling 
pathways. VEGF is a key mediator of  angiogenesis. Vas-
cular changes associated with angiogenesis usually occur 
in cancer; however, they have also been reported to oc-
cur in inflammatory disease processes. HCV C protein 
can activate the expression of  VEGF in hepatoma cell 
lines (HepG2) and might contribute to viral carcino-
genesis[162]. Co-expression of  the HBV X gene and the 
HCV core gene also increase the expression of  VEGF in 
HepG2 cells and act synergistically in carcinogenesis[163]. 
The expression levels of  TNFα mRNA and VEGF 
mRNA showed a positive correlation with the progres-
sion of  viral hepatitis to cirrhosis, i.e., the higher levels 
of  TNFα and VEGF mRNA, the higher the prevalence 
of  HCC[164]. HBV X protein is known to up-regulate the 
expression of  VEGF, thereby promoting angiogenesis 
in HCC via NFκB signaling pathway[165]. Serum VEGF 
concentration is a predictor of  invasion and metastasis in 
HCC[166] and positively correlates with the recurrence rate 
of  HCC after curative resection[167]. In contrast, calcitriol 
was reported to inhibit angiogenesis in vitro and in vivo[168]. 
Calcitriol significantly inhibits VEGF-induced endothelial 
cell spouting and elongation in a dose-dependent manner 
and decreases the production of  VEGF[169]. Calcitriol is a 
potent inhibitor of  retinal neovascularization in a mouse 
model of  oxygen-induced ischemic retinopathy[170]. Vi-
tamin D and its analog also reduce the expression of  
VEGF in various cancer cell lines[158,171]. Moreover, DBP-
maf was reported to inhibit angiogenesis and tumor 
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growth in mice[172] and inhibits the VEGF signaling by 
decreasing VEGF-mediated phosphorylation of  VEGF-2 
and ERK1/2, a downstream target of  the VEGF signal-
ing cascade[173]. These findings suggested that vitamin D 
modulates angiogenesis in viral hepatitis and may impact 
the mechanism of  progression to HCC in patients with 
viral hepatitis.

Prostaglandins (PGs) play a role in inflammatory 
processes. Cyclooxygenase (COX) participates in the con-
version of  arachidonic acid to PGs. HBV X protein was 
reported to up-regulate levels of  COX-2, 5-lipoxygenase 
and phosphorylated extracellular signal-regulated protein 
kinase ½ (p-ERK1/2) and releases arachidonic acid me-
tabolites in liver cells[174]. In liver samples from patients 
with chronic HCV infection, there is a significant cor-
relation between the dominant intensity of  COX-2 and 
the presence of  histological steatosis and an inverse cor-
relation was observed between COX-2 and viral load[175]. 
COX-2 up-regulates VEGF expression and tumor an-
giogenesis in HBV-associated HCC via PG production; 
selective COX-2 inhibitors may block HCC-associated 
angiogenesis and an increase in platelet counts when used 
with pegylated TFNα2a[176,177]. Indomethacin also cleared 
HBV DNA in chronic healthy carriers, and 5 patients 
with positive HBeAg became negative after 4 mo[178]. On 
the other hand, calcitriol has been reported to regulate 
the expression of  several key genes involved in the PG 
pathway, resulting in a decrease in PG synthesis[179]. Cal-
citriol and its analogs have been shown to selectively in-
hibit the activity of  COX-2[180]. These findings suggested 
that vitamin D plays a role in modulating the inflamma-
tory process in viral hepatitis.

Reactive oxygen species (ROS) are produced by acti-
vated phagocytes as a part of  their microbicidal activities. 
Intracellular hydrogen peroxide (H2O2) levels are signifi-
cantly higher in patients with chronic HCV infection than 
in asymptomatic carriers and positively correlates with 
alanine amino-transferase (ALT) levels[181]. ROS can also 
modulate the intracellular level of  HBV X protein. The 
direct addition of  H2O2 to cells significantly increased the 
level of  HBV X protein in HBV X protein ChangX-34 
cells, while antioxidants completely abolished the increase 
in HBV X protein[182]. There is a significant decrease 
glutathione (GSH) levels in the patients with HBV-infect-
ed[183]. Superoxide dismutase (SOD) was present in pe-
ripheral blood mononuclear cells (PBMC) but was absent 
in the liver of  patients with chronic HCV infection[184]. 
Levels of  lipid peroxidation products are increased in se-
rum, leukocyte, and liver specimens in HCV patients[185]. 
Similarly, calcitriol has been reported to exert a receptor-
mediated effect on the secretion of  H2O2 by human 
monocytes[186]. Human monocytes in culture gradually 
lose their capacity to produce superoxide when stimulat-
ed. The addition of  calcitriol, lipopolysaccharide or lipo-
teichoic acid restored the ability of  stimulated monocytes 
to produce superoxide and increased their oxidative ca-
pacity when compared with unstimulated monocytes[187]. 
Calcitriol can also protect nonmalignant prostate cells 

from oxidative stress-induced cell death by eliminating 
ROS-induced cellular injuries[188]. Vitamin D metabolites 
and vitamin D analogs were reported to induce lipoxy-
genase mRNA expression, lipoxygenase activity and ROS 
in a human bone cell line[189]. Vitamin D can also reduce 
the extent of  lipid peroxidation and induce SOD activity 
in the hepatic anti-oxidant system of  rats[190]. These find-
ings suggested that vitamin D modulates oxidative stress 
in viral hepatitis.

Nitric oxide (NO) is a reactive nitrogen species (RNS) 
that is critical in the redox biology of  hepatocytes and 
is formed by nitric oxide synthase (NOS). In the liver, 
iNOS was found to be important in the development and 
propagation of  inflammation. Viral hepatitis is associated 
with an increased iNOS expression[191,192]. HCV infection 
can also stimulate the production of  iNOS through the 
activation of  the iNOS gene by the viral core protein and 
the NS3 protein[191]. In patients with HCC, the combined 
negative expression of  iNOS and COX-2 on histology 
has a significant impact on patient survival[193]. Oxidative 
DNA damage has been reported to increase chromosom-
al aberrations associated with cell transformation, and ox-
idative stress has also been suggested in the development 
of  HCV-associated HCC. Oxidative DNA damage was 
observed in circulating leukocytes and occurs as an early 
event in chronic HCV infection[194]. NO often damage 
mitochondria, leading to the induction of  double-strand-
ed DNA breaks and the accumulation of  oxidative DNA 
damage[195]. The viral core and NS3 proteins were shown 
to be responsible for inhibition of  DNA repair, which 
is mediated by NO and ROS[196]. On the other hand, the 
activation of  macrophage 1α-hydroxylase results in an 
increase in 1,25 OHD, which inhibits iNOS expression 
and reduces the NO produced by LPS-stimulated mac-
rophages[197]. This calcitriol production by macrophages 
could provide protection against the oxidative injuries 
caused by the NO burst. Calcitriol is known to inhibit 
LPS-induced immune activation in human endothelial 
cells[198]. Calcitriol enhances intracellular GSH pools 
and significantly reduces the nitrite production induced 
by LPS[199]. In human macrophage-like cells, calcitriol 
induces iNOS and suppresses the growth of  M. tuberculo-
sis[200]. Moreover, calcitriol protects against doxorubicin-
induced chromosomal aberrations in rat bone marrow 
cells[201]. Calcitriol also acts synergistically with vanadium 
in inhibiting diethylnitrosamine-induced chromosomal 
aberrations and DNA-strand breaks in the rat liver[202]. In 
regenerating liver cells, calcitriol regulates the synthesis 
of  DNA polymerase-alpha, generates functional ribo-
nucleotide reductase subunits, and induces DNA replica-
tion[203,204]. In addition, calcitriol appears to be effective in 
suppressing liver-specific early chromosomal damage as 
well as DNA damage during the process of  rat hepato-
carcinogenesis[205].

CONCLUSION
The relationship between vitamin D and viral hepatitis 

Lương KVQ et al . Vitamin D and viral hepatitis



5344 October 14, 2012|Volume 18|Issue 38|WJG|www.wjgnet.com

has been discussed. Vitamin D may have a beneficial role 
in viral hepatitis. Genetic studies have provided the op-
portunity to determine what proteins link vitamin D to 
the pathology of  viral hepatitis. Vitamin D also exerts its 
effect on viral hepatitis via non-genomic mechanisms. As 
a result, it is imperative that vitamin D levels in patients 
with viral hepatitis be followed. Many studies use the 
relationship between serum PTH and 25OHD to define 
the normal range of  serum 25OHD. According to the 
report on Dietary Reference Intakes for vitamin D and 
calcium by the Institute of  Medicine (IOM), persons are 
at risk of  deficiency at serum 25OHD levels less than 30 
nmol/L. Recently, Saliba et al[206] suggested that a 25OHD 
threshold of  50 nmol/L is sufficient for PTH suppres-
sion and prevention of  secondary hyperparathyroidism in 
persons with normal renal function. Calcitriol is best used 
for viral hepatitis, because of  its active form of  vitamin 
D3 metabolite and inhibits inflammatory cytokine ex-
pression. Adjusting dose for calcitriol depends on serum 
calcium and PTH levels. However, monitoring of  serum 
25OHD after calcitriol intake is not necessary because 
calcitriol inhibits the production of  serum 25OHD in 
the liver[207,208]. Further investigation with calcitriol in viral 
hepatitis is needed.
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