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Abstract

Background

The relationship of serum 25(OH)D levels and hyperlipidemia has not been explored in the

Agriculture, Forestry, and Fishing (AFF) occupation. We aimed to explore the impact of

serum 25(OH)D levels on lipid profiles in AFF workers, traffic drivers, and miners.

Methods

Data from 3937 adults aged 18–65 years old with completed information were obtained from

the National Health and Examination Survey from 2001 to 2014. Multivariate linear regres-

sion models were used to examine the associations between serum 25(OH)D concentra-

tions and triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-

C), high-density lipoprotein cholesterol (HDL-C) and HDL-C/LDL-C ratio. Subgroup analy-

ses for AFF workers considered age, sex, BMI, work activity, months worked, and alcohol

consumption. Non-linear relationships were explored using curve fitting.

Results

Serum 25(OH)D levels differed between groups (AFF: 60.0 ± 21.3 nmol/L, drivers: 56.6 ±
22.2 nmol/L, miners: 62.8 ± 22.3 nmol/L). Subgroup analysis of the AFF group showed that

participants with serum 25(OH)D�50 nmol/L, females, and BMI <30 kg/m2 demonstrated

improved HDL-C levels correlating with higher serum 25(OH)D. Serum 25(OH)D in AFF

workers had a reversed U-shaped relationship with TG and TC, and a U-shaped relationship

with HDL-C, with HDL-C, with inflection points at 49.5 nmol/L for TG and TC, and 32.6 nmol/

L for HDL-C.
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Conclusions

Serum 25(OH)D levels are associated with lipid profiles, and the relationship varies among

occupational groups. AFF workers, facing unique occupational challenges, may benefit

from maintaining adequate serum 25(OH)D levels to mitigate adverse lipid profiles and

reduce cardiovascular risk.

Introduction

Hyperlipidemia, characterized by dysregulation of triglycerides (TG), total 3 cholesterol (TC),

low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol

(HDL-C), is a significant risk factor for atherosclerosis, cardiovascular and immune-related

diseases [1–3]. High TG levels, reduced HDL-C, and atherogenic small dense LDL (sdLDL)

collectively contribute to the metabolic insulin resistance syndrome, which exhibits a nearly

linear association with cardiovascular disease (CVD) risk [4].

25-hydroxyvitamin D [25(OH)D]-the primary storage form of vitamin D, plays a crucial

role in regulating calcium and phosphate metabolism, promoting bone health, supporting

immune function [5]. Moreover, emerging evidence suggests that serum 25(OH)D may also

contribute to reducing the risk of mortality, particularly among individuals with hypertension

and type 2 diabetes [6]. Sun exposure and oral intake are the two main sources of serum 25

(OH)D, including vitamin D supplementation and dietary intake [7]. The relationship

between serum 25(OH)D concentrations and hyperlipidemia has been investigated in several

studies with some indicating a negative association between serum 25(OH)D levels and lipid

profiles such as TC, TG, and LDL-C [8–10], while others have not found a clear association

[11, 12]. These discrepancies may be attributed to differences in study design, sample charac-

teristics, and the presence of other confounding factors. Additionally, the relationship between

vitamin D and lipid metabolism is complex and influenced by various factors, including sun-

light exposure, diet, physical activity, genetic factors, and other environmental factors [13]. In

the United States, workers in the Agriculture, Forestry, and Fishing (AFF) occupations are

commonly referred to as the labor force within the agricultural sector [14]. In 2004, the AFF

sector employed around 2.1 million workers, solidifying its position as one of the United

States’ largest economic sectors [15]. Despite numerous studies indicating that individuals

working in AFF occupations are prone to diseases associated with exposure to sunlight and

pesticides due to the nature of their work [16–18], no reports have yet explored the specific

relationship between serum 25(OH)D concentrations and hyperlipidemia within the AFF

population.

Given the conflicting findings regarding the association between serum 25(OH)D concen-

trations and hyperlipidemia, as well as the complexity of lipid metabolism and the unique

characteristics of AFF occupations, our study aims to explore the effects of increasing serum

25(OH)D levels on changes in blood lipid profiles based on a large and representative US gen-

eral population from the National Health and Nutrition Examination Survey (NHANES) from

2001 to 2014. Considering that physical activity and sun exposure may be pivotal factors influ-

encing the relationship between serum 25(OH)D concentrations and lipid profiles in AFF, we

selected two control groups within AFF: traffic drivers and miners: regarding physical activity,

the traffic drivers represent a subgroup of workers characterized by non-vigorous physical

activity during work and limited sun exposure, whereas miners constitute a subgroup engaged

in vigorous physical activity at work but also lacking significant sun exposure.
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Materials and methods

Study population

This study employed a cross-sectional analysis using data from seven cycles (2001–2014) of the

National Health and Nutrition Examination Survey (NHANES), a vital survey conducted col-

laboratively by the Centers for Disease Control and Prevention (CDC) and the National Cen-

ter for Health Statistics (NCHS) in the US. A total of 32,711 participants aged 18 to 65 years

were initially recruited. From these, we selected individuals based on the ’Kind of work you

have done the longest’ category in the NHANES occupation section. We then identified their

specific job classifications using the survey’s supplementary tables. For our analysis, we focused

on 4,872 individuals who had AFF, traffic driving, and mining as their longest-held jobs. After

excluding participants with incomplete serum 25(OH)D concentrations data (n = 935), our

analysis included a final sample of 3937 participants with complete data on both serum 25

(OH)D concentrations and lipid profiles. A schematic representation of the sample selection

process is depicted in (Fig 1).

The NHANES study obtained ethical clearance from the Research Ethics Review Board of

the National Center for Health Statistics and the documented consent was obtained from par-

ticipants (Protocol #98–12, #2005–06, #2011–17). Written informed consent was obtained

from all participants. Further information can be found at https://www.cdc.gov/nchs/nhanes/

irba98.htm.

Variables

Serum 25(OH)D concentrations. From 2001 to 2006, serum 25(OH)D concentrations

were measured using the radio immunoassay (RIA) method. Subsequently, from 2007 to 2014,

a standardized liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was

employed. According to the NHANES recommendations, serum 25(OH)D concentrations

data from 2001 to 2006 have been converted by using regression to equivalent 25(OH)D mea-

surements from a standardized liquid chromatography-tandem mass spectrometry (LC-MS/

Fig 1. Flow chat of sample selection from the NHANES 2001–2014.

https://doi.org/10.1371/journal.pone.0297873.g001
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MS) method. Detailed descriptions of the laboratory methods and protocols can be found on

the NHANES website (http://www.cdc.gov/nchs/nhanes/).

In our analysis, we categorized serum 25(OH)D concentrations into two groups based on

the definitions of vitamin D sufficiency and deficiency according to the USA Institute of Med-

icine (IOM): vitamin D sufficiency with� 50 nmol/L and < 50 nmol/L as vitamin D defi-

ciency [19, 20].

Outcomes. This study focused on 5 outcome variables: TC, TG, HDL-C, LDL-C, obtained

from NHANES laboratory data, along with the HDL-C to LDL-C ratio. Timed-endpoint

methods were used to measure the concentrations of these four lipids [21].

Other variables. The categorical variables were: sex, race, education level, marital status,

vigorous work activity (Activities that require hard physical effort and cause large increases in

breathing or heart rate. The participants were asked “Does your work involve vigorous-intensity

activity that causes large increases in breathing or heart rate like carrying or lifting heavy loads,

digging or construction work for at least 10 minutes continuously?”), hypertension (whether

you have been informed by a doctor about high blood pressure), diabetes (whether you have

been informed by a doctor about having diabetes), hyperlipidemia (whether you have been

informed by a doctor about having high cholesterol), smoking status (whether you have smoked

at least 100 cigarettes in your lifetime), heavy alcohol consumption (Ever have 4/5 or more

drinks every day). Furthermore, race was classified as Hispanic, non-Hispanic White, non-His-

panic Black, or others. Each race was included separately as a dummy variable, e.g., “Hispanic”-

yes/no, “Non-Hispanic White”- yes/no, “Non-Hispanic Black”- yes/no, “Others”-yes/no.

Additionally, we included several continuous covariates, including age, body mass index

(BMI), arm circumference, waist circumference, energy intake (NHANES participants under-

went two 24-hour dietary recall interviews, with the first conducted in-person at the Mobile

Examination Center (MEC) and the second via telephone 3 to 10 days later. We utilized the

average of these two sets of data), other metabolic indexes (serum glucose, glycohemoglobin,

blood urea nitrogen, uric acid and creatinine). Detailed information on serum 25(OH)D con-

centrations, TC, TG, LDL-C, HDL-C, and other covariates can be found on the NHANES

website, which is publicly accessible (http://www.cdc.gov/nchs/nhanes/). Besides, we also

divided BMI into three groups based on the official (WHO) cut-offs for nutritional status: <

25 kg/m2 (normal weight and underweight), 25–30 kg/m2 (overweight), and� 30 kg/m2

(obese) [22], as well as divided the lipid profiles into two groups: TG< or� 1.7 mmol/L,

TC< or�5.2 mmol/L, LDL-C < or� 3.4 mmol/L, HDL� or > 1.0 mmol/L for men and 1.3

mmol/L for women [23], and� or> 0.4 mmol/L for HDL-C/LDL-C ratio [24, 25].

Statistical analysis

The analysis was conducted following the recommendations of the NCHS. Categorical variables

were presented as numbers with percentages, while continuous variables were expressed as

means ± standard deviations (SDs). The normality of the distribution of continuous data was

tested by using the Kolmogorov–Smirnov test. Differences among the three occupation groups

were assessed using chi-square tests for categorical variables and by Student T test or Mann-

Whitney test, depending on the parametric or non-parametric distribution of continuous data.

To explore the relationship between serum 25(OH)D concentrations and lipid profiles,

multivariable regression models were constructed: Model 1 (unadjusted), Model 2 (adjusted

for sex, age, each particular race, smoking, heavy alcohol consumption, diabetes, hypertension,

vigorous physical activity, education level, and marital status), and Model 3 (additionally

adjusted for BMI). Besides, the analyses were repeated with the inclusion of energy intake as a

covariate in Models 2 and 3.
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In addition, in the AFF occupation group, stratified analyses were conducted based on

serum 25(OH)D concentrations (< 50 nmol/L or� 50 nmol/L), sex, age (< 40 years old

or� 40 years old), BMI (< 30 kg/m2 or� 30 kg/m2), vigorous work activity (yes or no), work

duration (< 16.7 years or� 16.7 years, see below) and heavy alcohol consumption (yes or no).

Additionally, we performed subgroup analysis stratified by age, sex, BMI, vigorous work activ-

ity duration of working and heavy alcohol in AFF occupation, which aimed to provide further

insights into the potential variations in lipid profiles concerning serum 25(OH)D concentra-

tions among the AFF population.

Generalized additive models and smoothed curve fitting techniques were then employed to

detect any nonlinear relationships between serum 25(OH)D concentrations and lipid profiles in

the three distinct occupational groups, using a recursive algorithm for calculating infection. The

analyses were adjusted by sex, age, each particular race, BMI, smoking, heavy alcohol, diabetes,

hypertension, vigorous physical activity, education level, and marital status (i.e., from Model 3).

All statistical analyses were performed using the R software package (http://www.Rproject.

org) and Empower Stats (http://www.empowerstats.com). Statistical significance was deter-

mined at a p-value threshold of less than 0.05.

Results

Description of participant characteristics

Detailed baseline characteristics of all participants were presented in Table 1. The three occu-

pational groups did not differ regarding age (about 40–41 years old). In all of them, the major-

ity were males, but the most in the miners (above 90%) and the least in the AFF occupations

(about three-quarters). Among the AFF group, about 60% were Hispanic and about 30% were

non-Hispanic White, while in the traffic drivers and miners, the non-Hispanic White and

non-Hispanic Black ethnicity was much more represented.

The average serum 25(OH)D concentrations in the AFF workers were 60.0 ± 21.3, and

about two-thirds had vitamin D sufficient levels. Among these three occupational groups, min-

ers exhibited the highest (62.8 ± 22.3 nmol/L), while traffic drivers had the lowest serum 25

(OH)D concentrations values (56.6 ± 22.2 nmol/), which statistically differed from the AFF

group. The differences in lipid profiles, glucose, and glycohemoglobin were mostly non-signif-

icant. In all three groups, there was a high proportion of the subjects with increased TG (about

40–43%), TC (40–45%), LDL-C (30–35%), and decreased HDL-C levels (26–33%) and

HDL-C/LDL-C ratio (47–48%), with one-third of the subjects being previously diagnosed with

dyslipidemia. In contrast, the AFF group had lower BMI and waist circumference compared to

traffic drivers, and lower arm circumference, serum creatinine, uric acid, and energy intakes

compared to both two other groups. In the AFF group and miners, the majority were over-

weight, while among drivers, the majority were obese. In all three groups, only about 30% or

less were the normal weight subjects. The AFF subjects differed from both two other groups

regarding the lower percentage of hypertension, lower educational level, and lower percentage

of smokers, while from miners only differed by the lower percentage of vigorous work physical

activity and heavy alcohol consumption (Table 1).

Different relationships of serum 25(OH)D concentrations with lipid

profiles in three occupations

We designed multivariate linear regression models to investigate the independent associations

of serum 25(OH)D levels with lipid profiles. After conducting the univariate regression analy-

ses (S1, S2 Tables in S1 Appendix), sex, age, each particular race, smoking, heavy alcohol
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Table 1. Baseline characteristics of 3937 participants according to occupation.

Characteristics AFF Traffic drivers Miners P-values

AFF vs. drivers AFF vs. miners divers vs. miners

Participants (No.) 625 1604 1708 - - -

Serum 25(OH)D (nmol/L) 60.0 ± 21.3 56.6 ± 22.2 62.8 ± 22.3 0.001** 0.006** <0.001***
Working months 142.2 ± 125.7 122.8 ± 114.9 159.8 ± 129.8 0.010* 0.030* <0.001***
TG (mmol/L) 2.0 ± 1.6 1.8 ± 1.6 2.0 ± 1.9 0.104 0.654 0.008**
TC (mmol/L) 5.1 ± 1.1 5.0 ± 1.2 5.1 ± 1.1 0.072 0.815 0.029*
LDL-C (mmol/L) 3.1 ± 0.9 3.0 ± 1.0 3.0 ± 0.9 0.165 0.339 0.495

HDL-C (mmol/L) 1.2 ± 0.3 1.3 ± 0.4 1.3 ± 0.4 0.627 0.690 0.909

HDL/LDL ratio 0.5 ± 0.2 0.5 ± 0.3 0.5 ± 0.3 0.106 0.338 0.261

Age (years) 40.6 ± 14.9 41.4 ± 14.0 41.4 ± 13.5 0.254 0.208 0.915

Serum glucose (mmol/L) 5.7 ± 2.2 5.7 ± 2.3 5.6 ± 2.0 0.819 0.697 0.407

BMI (kg/m2) 28.6 ± 6.1 29.5 ± 7.1 28.3 ± 5.8 0.005** 0.285 <0.001***
Arm circumference (cm) 33.3 ± 4.5 34.5 ± 5.2 33.9 ± 4.3 <0.001*** 0.004** <0.001***
Waist circumference (cm) 98.1 ± 15.3 101.1 ± 17.6 98.3 ± 14.9 <0.001*** 0.728 <0.001***
Creatinine (μmol/L) 74.5 ± 18.2 85.4 ± 43.9 82.2 ± 18.7 <0.001*** <0.001*** 0.006**
Blood urea nitrogen (mmol/L) 4.5 ± 1.7 4.4 ± 1.7 4.4 ± 1.5 0.032* 0.115 0.322

Serum uric acid (μmol/L) 326.4 ± 83.6 344.3 ± 80.9 347.3 ± 77.3 <0.001*** <0.001*** 0.266

Glycohemoglobin (%) 5.7 ± 1.2 5.7 ± 1.2 5.7 ± 1.1 0.643 0.424 0.086

Energy intake (kcal) 2315.6 ± 1040.5 2419.4 ± 1031.4 2592.6 ± 1096.6 0.039* <0.001*** <0.001***
Serum 25(OH)D categories (%) 0.008** 0.005** <0.001***
< 50 nmol/L 221 (35.4%) 665 (41.5%) 500 (29.3%)

� 50 nmol/L 404 (64.6%) 939 (58.5%) 1208 (70.7%)

BMI categories (%) 0.021* 0.339 <0.001***
< 25 kg/m2 166 (27.2%) 421 (26.6%) 510 (30.2%)

25–30 kg/m2 242 (39.6%) 543 (34.3%) 627 (37.1%)

� 30 kg/m2 203 (33.2%) 621 (39.2%) 553 (32.7%)

TG categories (%) 0.246 0.827 0.062

< 1.7 mmol/L 359 (57.8%) 965 (60.5%) 973 (57.3%)

� 1.7 mmol/L 262 (42.2%) 630 (39.5%) 725 (42.7%)

TC categories (%) 0.043* 0.960 0.005**
< 5.2 mmol/L 342 (54.9%) 953 (59.6%) 934 (54.8%)

� 5.2 mmol/L 281 (45.1%) 646 (40.4%) 771 (45.2%)

LDL-C categories (%) 0.191 0.560 0.318

< 3.4 mmol/L 186 (65.3%) 504 (69.5%) 554 (67.2%)

� 3.4 mmol/L 99 (34.7%) 221 (30.5%) 271 (32.8%)

HDL-C categories (%) 0.140 <0.001*** 0.012*
� 1.0 or 1.3 mmol/L 207 (33.2%) 479 (30.0%) 444 (26.0%)

> 1.0 or 1.3 mmol/L 417 (66.8%) 1120 (70.0%) 1261 (74.0%)

HDL/LDL ratio categories (%) 0.854 0.646 0.714

� 0.4 mmol/L 133 (46.7%) 343 (47.3%) 398 (48.2%)

> 0.4 mmol/L 152 (53.3%) 382 (52.7%) 427 (51.8%)

Sex (%) <0.001*** <0.001*** <0.001***
Males 453 (72.5%) 1296 (80.8%) 1580 (92.5%)

Females 172 (27.5%) 308 (19.2%) 128 (7.5%)

Race (%)

Hispanic <0.001*** <0.001*** <0.001***
Yes 377 (60.3%) 450 (28.1%) 650 (38.1%)

(Continued)
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consumption, diabetes, hypertension, vigorous physical activity, education level, and marital

status were added as covariates in multivariate regression analyses (Model 2), while BMI was

additionally added as a covariate in the fully adjusted model (Model 3) (Tables 2 and 3). Some

of the variables from S1, S2 Tables in S1 Appendix were excluded from covariates due to the

Table 1. (Continued)

Characteristics AFF Traffic drivers Miners P-values

AFF vs. drivers AFF vs. miners divers vs. miners

No 248 (39.7%) 1154 (71.9%) 1058 (61.9%)

Non-Hispanic White 0.013* <0.001*** <0.001***
Yes 192 (30.7%) 582 (36.3%) 720 (42.2%)

No 433 (69.3%) 1022 (63.7%) 988 (57.8%)

Non-Hispanic Black <0.001*** <0.001*** <0.001***
Yes 38 (6.1%) 486 (30.3%) 271 (15.9%)

No 587 (93.9%) 1118 (69.7%) 1437 (84.1%)

Others 0.013* 0.234 0.049*
Yes 18 (2.9%) 86 (5.4%) 67 (3.9%)

No 607 (97.1%) 1518 (94.6%) 1641 (96.1%)

Hypertension (%) <0.001*** 0.008** 0.005**
Yes 119 (19.7%) 469 (29.3%) 426 (25.0%)

No 485 (80.3%) 1130 (70.7%) 1278 (75.0%)

Hyperlipidemia (%) 0.558 0.506 0.058

Yes 108 (35.5%) 405 (37.4%) 368 (33.5%)

No 196 (64.5%) 679 (62.6%) 731 (66.5%)

Diabetes (%) 0.015* 0.795 0.002**
Yes 56 (9.0%) 203 (12.7%) 159 (9.3%)

No 568 (91.0%) 1401 (87.3%) 1546 (90.7%)

Smoking status (%) <0.001*** <0.001*** <0.001***
Yes 246 (43.7%) 819 (54.2%) 1067 (65.1%)

No 317 (56.3%) 693 (45.8%) 571 (34.9%)

Heavy alcohol (%) 0.744 0.001** <0.001***
Yes 107 (24.3%) 322 (25.1%) 475 (32.4%)

No 333 (75.7%) 961 (74.9%) 993 (67.6%)

Vigorous work activity (%) 0.435 <0.001*** <0.001***
Yes 198 (31.7%) 481 (30.0%) 744 (43.6%)

No 427 (68.3%) 1123 (70.0%) 963 (56.4%)

Education level (%) <0.001*** <0.001*** <0.001***
Less than high school 373 (60.8%) 529 (33.0%) 719 (42.2%)

High school and above 240 (39.2%) 1073 (67.0%) 984 (57.8%)

Marital status (%) 0.010* 0.160 0.106

Married or with a partner 405 (66.3%) 938 (60.3%) 1048 (63.1%)

Others 206 (33.7%) 617 (39.7%) 613 (36.9%)

Notes: Mean ± SD for continuous variables and between groups P values were calculated by Student T test or Mann-Whitney test, depending on the parametric or non-

parametric distribution of continuous data.

* P <0.05;

** P <0.01;

*** P <0.001.

https://doi.org/10.1371/journal.pone.0297873.t001
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issue of multicollinearity, while energy intake was excluded due to high inter-day variability

and weak correlation with lipid levels.

In the univariate analyses, no significant associations were found between serum 25(OH)D

and lipid profiles, except positive associations with HDL-C and HDL-C/LDL-C ratio in the

AFF group only. The further analyses with adjustments for multiple covariates (except BMI),

increased the significance of the association of serum 25(OH)D with TG levels (negative) and

with HDL-C levels (positive) in the total sample. Nevertheless, the stratified analyses revealed

that the associations with TG levels were the most significant among miners, while with

HDL-C levels were the most significant among the AFF occupations and traffic drivers. How-

ever, further adjustment for BMI annulated the significance of these associations, indicating

that the associations were mostly mediated by the effect of BMI.

Stratified analyses on the relationships of serum 25(OH)D with lipid

profiles in the AFF group

We additionally made stratified analyses according to categories of vitamin D status, age, sex,

nutritional status, heavy alcohol consumption, vigorous work physical activity, and duration

of work engagement in AFF occupations. We focused on the duration of work engagement in

AFF occupations, as our supplementary analyses indicated a connection with the lipid profiles

of workers in these sectors (S1 Fig in S1 Appendix). The results are shown in Table 3 (referring

to the fully adjusted regression model, Model 3) and in S3 Table in S1 Appendix (referring to

the adjusted model without BMI as a covariate, Model 2). The subgroup analyses revealed:

Table 2. The associations of serum 25(OH)D concentrations with lipid profiles in three occupations.

Outcomes: (β (95% CI) P-value)

TG (mmol/L) TC (mmol/L) HDL-C (mmol/L) LDL-C (mmol/L) HDL-C/LDL-C

Total

Model 1 -0.002 (-0.004, 0.001) 0.20 -0.000 (-0.002, 0.001) 0.90 -0.000 (-0.001, 0.000) 0.82 -0.000 (-0.002, 0.002) 0.85 -0.000 (-0.001, 0.000) 0.72

Model 2 -0.004 (-0.007, -0.001) < 0.01** -0.001 (-0.003, 0.001) 0.37 0.001 (0.000, 0.001) 0.02* -0.000 (-0.003, 0.002) 0.73 0.000 (-0.000, 0.001) 0.24

Model 3 -0.002 (-0.006, 0.001) 0.12 -0.001 (-0.003, 0.001) 0.56 0.000 (-0.001, 0.001) 0.78 -0.000 (-0.003, 0.002) 0.98 0.000 (-0.001, 0.001) 0.82

AFF

Model 1 -0.003 (-0.009, 0.003) 0.28 -0.001 (-0.005, 0.003) 0.67 0.002 (0.000, 0.003) 0.01* -0.001 (-0.006, 0.003) 0.53 0.001 (0.000, 0.002) 0.003**
Model 2 -0.002 (-0.010, 0.007) 0.68 0.000 (-0.006, 0.006) 0.99 0.002 (0.000, 0.004) 0.03* 0.000 (-0.006, 0.006) 0.97 0.001 (-0.000, 0.002) 0.08

Model 3 -0.001 (-0.009, 0.007) 0.84 0.001 (-0.005, 0.007) 0.80 0.001 (-0.001, 0.003) 0.20 0.001 (-0.005, 0.007) 0.79 0.001 (-0.001, 0.002) 0.23

Traffic drivers

Model 1 0.001 (-0.003, 0.004) 0.71 0.001 (-0.002, 0.003) 0.51 -0.001 (-0.001, 0.000) 0.25 0.000 (-0.003, 0.003) 0.86 -0.000 (-0.001, 0.001) 0.36

Model 2 -0.003 (-0.008, 0.001) 0.14 0.000 (-0.003, 0.003) 0.93 0.001 (0.000, 0.002) 0.04* -0.001 (-0.005, 0.003) 0.72 0.001 (-0.000, 0.002) 0.15

Model 3 -0.002 (-0.006, 0.002) 0.38 0.000 (-0.003, 0.004) 0.86 0.000 (-0.001, 0.001) 0.36 -0.001 (-0.005, 0.003) 0.74 0.001 (-0.000, 0.002) 0.23

Miners

Model 1 -0.003 (-0.007, 0.001) 0.12 -0.001 (-0.003, 0.002) 0.55 -0.000 (-0.001, 0.001) 0.64 -0.000 (-0.003, 0.003) 0.94 -0.000 (-0.001, 0.000) 0.36

Model 2 -0.006 (-0.011, -0.000) 0.03* -0.002 (-0.005, 0.001) 0.21 0.000 (-0.001, 0.001) 0.66 0.000 (-0.003, 0.004) 0.92 -0.001 (-0.002, 0.000) 0.26

Model 3 -0.003 (-0.008, 0.002) 0.23 -0.001 (-0.004, 0.002) 0.36 -0.001 (-0.002, 0.000) 0.20 0.001 (-0.003, 0.005) 0.60 -0.001 (-0.002, -0.000) 0.02*

Model 1: Non-adjusted

Model 2: Adjusted for sex, age, each particular race, smoking, heavy alcohol, diabetes, hypertension, vigorous physical activity, education level, and marital status.

Model 3: Adjusted for covariates in Model 2 with additionally BMI included.

* P <0.05,

** P <0.01.

https://doi.org/10.1371/journal.pone.0297873.t002
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Vitamin D Status: When compared to the group with serum 25(OH)D concentrations < 50

nmol/L,� 50 nmol/L group exhibited improved lipid profiles (decreased TG, and increased

HDL-C levels and HDL-C/LDL-C ratio). However, the statistical significance was achieved

only for HDL-C levels in the fully adjusted model.

Sex: Females exhibited more beneficial HDL-C levels in response to serum 25(OH)D com-

pared to males.

BMI: Only within the subgroup with BMI<30, serum 25(OH)D levels were positively cor-

related with HDL-C levels.

Age, Vigorous Work Activity, Work Duration, and Heavy Alcohol Consumption:

There were no significant associations in either category.

In summary, the statistical significance in the associations between vitamin D and lipid was

achieved only for HDL-C levels in individuals with vitamin D sufficient status, females, and

non-obese individuals in the fully adjusted model.

Smoothed curve fitting and two-piecewise linear regression model

Additionally, generalized additive models and smoothed curve fitting revealed different trends

among the three occupational groups. Notably, in the AFF group, serum 25(OH)D

Table 3. The stratified analyses of the associations of serum 25(OH)D concentrations with lipid profiles in AFF occupations (with fully adjusted model).

Outcomes: (β (95% CI) P-value)

TG (mmol/L) TC (mmol/L) HDL-C (mmol/L) LDL-C (mmol/L) HDL-C/LDL-C

Total -0.001 (-0.009, 0.007) 0.84 0.001 (-0.005, 0.007) 0.80 0.001 (-0.001, 0.003) 0.20 0.001 (-0.005, 0.007) 0.79 0.001 (-0.001, 0.002) 0.23

Serum 25(OH)D group (nmol/L)

< 50 0.027 (-0.007, 0.061) 0.12 0.021 (-0.006, 0.047) 0.13 -0.005 (-0.013, 0.003) 0.19 -0.010 (-0.043, 0.023) 0.57 -0.000 (-0.006, 0.006) 0.96

� 50 -0.010 (-0.021, 0.001) 0.08 -0.004 (-0.013, 0.005) 0.39 0.003 (0.001, 0.005) < 0.01** 0.002 (-0.007, 0.010) 0.72 0.002 (-0.000, 0.004) 0.09

Age (years)

< 40 0.000 (-0.014, 0.015) 0.97 0.005 (-0.006, 0.016) 0.34 0.002 (-0.001, 0.005) 0.25 -0.002 (-0.015, 0.010) 0.75 0.001 (-0.002, 0.004) 0.39

� 40 -0.002 (-0.011, 0.008) 0.75 -0.001 (-0.008, 0.006) 0.73 0.001 (-0.001, 0.003) 0.29 0.001 (-0.007, 0.008) 0.83 0.001 (-0.000, 0.002) 0.17

Sex

Males 0.002 (-0.008, 0.012) 0.72 0.001 (-0.006, 0.008) 0.77 -0.000 (-0.002, 0.001) 0.64 0.002 (-0.006, 0.010) 0.61 0.000 (-0.001, 0.002) 0.66

Females -0.007 (-0.019, 0.005) 0.28 -0.000 (-0.011, 0.010) 0.93 0.004 (0.001, 0.007) 0.02* -0.001 (-0.012, 0.011) 0.87 0.002 (-0.001, 0.004) 0.23

BMI (kg/m2)

< 30 -0.003 (-0.012, 0.007) 0.60 0.003 (-0.004, 0.010) 0.37 0.003 (0.001, 0.005) 0.01* 0.002 (-0.005, 0.009) 0.57 0.001 (-0.000, 0.003) 0.11

� 30 0.004 (-0.009, 0.018) 0.54 -0.003 (-0.015, 0.008) 0.56 -0.002 (-0.005, 0.000) 0.10 0.000 (-0.015, 0.016) 0.95 -0.001 (-0.003, 0.002) 0.65

Vigorous work activity

Yes 0.001 (-0.012, 0.014) 0.90 -0.002 (-0.013, 0.009) 0.71 0.002 (-0.001, 0.005) 0.24 0.000 (-0.012, 0.012) 0.98 0.001 (-0.002, 0.004) 0.36

No -0.001 (-0.011, 0.010) 0.91 0.002 (-0.005, 0.009) 0.64 0.001 (-0.002, 0.003) 0.63 0.001 (-0.007, 0.009) 0.86 0.000 (-0.001, 0.002) 0.59

Working months

< 200 -0.002 (-0.017, 0.012) 0.76 -0.006 (-0.018, 0.006) 0.33 0.001 (-0.002, 0.004) 0.61 -0.009 (-0.023, 0.005) 0.21 0.001 (-0.002, 0.005) 0.37

� 200 0.002 (-0.019, 0.022) 0.87 0.000 (-0.016, 0.017) 0.97 -0.000 (-0.004, 0.004) 0.87 0.009 (-0.012, 0.029) 0.42 -0.000 (-0.003, 0.002) 0.76

Heavy alcohol

Yes 0.005 (-0.014, 0.023) 0.62 0.005 (-0.007, 0.016) 0.46 0.001 (-0.003, 0.005) 0.54 -0.001 (-0.014, 0.013) 0.94 0.001 (-0.002, 0.004) 0.48

No -0.002 (-0.011, 0.007) 0.67 0.000 (-0.007, 0.007) 0.96 0.001 (-0.001, 0.003) 0.18 0.001 (-0.006, 0.009) 0.73 0.001 (-0.000, 0.003) 0.13

Sex, age, each particular race, BMI, smoking, heavy alcohol, diabetes, hypertension, vigorous physical activity, education level, and marital status were adjusted except

the variable itself. (continuous age BMI was adjusted in the age and BMI subgroup).

* P <0.05,

** P <0.01.

https://doi.org/10.1371/journal.pone.0297873.t003
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concentrations exhibited a reversed U-shaped relationship with TG and TC, a U-shaped rela-

tionship with HDL-C, while they showed linear relationships with LDL-C and HDL-C/LDL-C

(Figs 2 and 3). Further threshold analysis revealed that the inflection points for TG and TC

were both at 49.5 nmol/L serum 25(OH)D, and for HDL-C, it was 32.6 nmol/L. However,

there was no statistically significant linear or nonlinear relationship observed between LDL-C

and the HDL-C/LDL-C ratio and serum 25(OH)D concentrations (Table 4). The results with-

out BMI adjustment were shown in S2, S3 Figs in S1 Appendix, along with Table 4.

Discussion

This study is among the very rare ones that examined the correlation between serum 25(OH)

D levels and lipid profiles within a population engaged in agriculture, forestry, and fishing

Fig 2. The associations between serum 25(OH)D concentrations and triglycerides, total cholesterol. (a, c) Each black point represents a sample and the red line

represents the general trend of these samples. (b, d) Associations of serum 25(OH)D concentrations with triglycerides, total cholesterol stratified by occupations. Sex,

age, each particular race, BMI, smoking, heavy alcohol, diabetes, hypertension, vigorous physical activity, education level, and marital status were adjusted.

https://doi.org/10.1371/journal.pone.0297873.g002
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Fig 3. The associations between serum 25(OH)D concentrations and LDL cholesterol, LDL cholesterol, HDL-C/LDL-C. (a, c, e) Each black point

represents a sample and the red line represents the general trend of these samples. (b, d, f) Associations of serum 25(OH)D concentrations with LDL

cholesterol, HDL cholesterol and HDL-C/LDL/C stratified by occupations. Sex, age, each particular race, BMI, smoking, heavy alcohol, diabetes,

hypertension, vigorous physical activity, education level, and marital status were adjusted.

https://doi.org/10.1371/journal.pone.0297873.g003
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professions. The associations of serum 25(OH)D concentrations with lipid profiles differed

significantly among the three groups, highlighting the unique non-linear pattern observed in

the AFF group when compared to both traffic workers and miners.

Our findings revealed that the average serum 25(OH)D concentrations in the AFF group

were intermediate between those of traffic drivers (lower) and miners (higher), and fell into

the vitamin D sufficiency range. About two-thirds of the subjects in the AFF group were vita-

min D sufficient, while one-third were vitamin D deficient, which indicates that vitamin D

deficiency is still present within the AFF sector. At the same time, all three professional groups

showed pretty similar lipid profiles, with a high proportion of the subjects with increased TG,

TC, LDL-C, and decreased HDL-C levels and HDL-C/LDL-C ratio. This was in agreement

with the findings that in all three groups, the average BMI was in the range of overweight and

that about 70% of the subjects in each group were overweight or obese, with slightly higher

numbers among the traffic drivers. Moreover, this study found significantly lower serum creat-

inine and uric acid levels in the AFF group compared to two other groups (Table 1). This

could indicate higher physical activity and healthier diets in the AFF group, potentially leading

to better metabolic health [26]. Regarding serum glucose, no significant difference was noted

among the three groups, with levels consistently within 5.7 ± 2.2 mmol/L. This implies that

occupational type might not significantly influence blood sugar control. Notably, the AFF

group’s lower BMI and waist circumference might be crucial in determining their metabolic

markers. Generally, lower BMI and waist circumference correlate with improved metabolic

health, likely explaining the AFF group’s lower creatinine and uric acid levels [27]. Although

serum glucose levels were similar across all groups, the AFF group’s lower creatinine and uric

acid levels may indicate better kidney function and metabolic status [28, 29].

Even though we have not found linear associations of serum 25(OH)D concentrations with

serum lipid levels in the total sample and specific professions, the subgroup analyses within the

AFF group indicated that vitamin D was linearly associated with better HDL-C levels in vita-

min D sufficient individuals, females, and those without obesity. Besides, we found non-linear

associations in the whole AFF group, indicating the inverse U-shaped pattern for the associa-

tions with TG and TC, and U-shaped pattern for HDL-C, with the inclination points about 50

nmol/L (for TG and TC) and 33 nmol/L (for HDL-C). However, the graphical presentation

shows that 50 nmol/L could be also the inclination point for HDL-C.

The values of 50 nmol/L for the serum 25(OH)D concentrations are the official cut-off

between vitamin D deficiency/insufficiency and vitamin D sufficiency according to the IOM,

while according to the Endocrine Society, this is the border between vitamin D deficiency and

vitamin D insufficiency [30, 31]. According to the IOM, the level of 30 nmol/L is the cut-off

for severe deficiency [30, 31]. The official cut-offs for the serum 25(OH)D concentrations are

related to the parathyroid hormone (PTH) concentration plateau at vitamin D levels of 50

nmol/L [30–32]. Of interest, PTH concentrations were associated with metabolic syndrome

and lipid levels in numerous studies, particularly with TG and HDL-C levels, even indepen-

dently of the BMI, with possibly sexually dimorphic associations [33–39]. It is possible that

vitamin D deficiency, leading to high levels of PTH can negatively influence the metabolism of

lipids. PTH can influence lipid levels through its effects on calcium and activation of vitamin

D in the kidney, but it can have some more direct effects on insulin resistance, adipose tissue

metabolism, lipolysis, and obesity development, as well as lipid metabolism in the liver [34–

36]. Vitamin D, in contrast, can itself have effects on adipose tissue metabolism, differentia-

tion, and adipogenesis, lipolysis, adipokines’ secretion, oxidative phosphorylation and insulin

sensitivity in various tissues (influencing insulin signaling, glucose transporter, and mitochon-

drial function), lipid clearance in fat tissue and the muscle, lipid metabolism in the liver (the

lipid particle components’ production, assembly, storage, and secretion), insulin secretion in
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the pancreas, other hormones secretion and action (sex hormones, glucocorticoids, mineralo-

corticoids, and renin-angiotensin-aldosterone system -RAAS), oxidative stress, and inflamma-

tion, and though all that ways modulate lipid metabolism, not only through its indirect effects

on calcium and PTH [40–45]. In fact, all those direct and indirect mechanisms can be included

[40, 46]. For instance, some of the mechanisms could be mediated through the association of

vitamin D and PTH with obesity and BMI, but some independent associations can exist, as

Table 4. Threshold effect analysis of serum 25(OH)D concentrations on lipid profiles.

Adjusted HR (95% CI) P-value

TG

Fitting by the standard linear model -0.001 (-0.009, 0.007) 0.84

Fitting by the two-piecewise linear model

Infection point 49.5

serum 25(OH)D < Infection point 0.028 (0.003, 0.053) 0.03*
serum 25(OH)D� Infection point -0.008 (-0.018, 0.002) 0.11

P for Log-likelihood ratio 0.02*
TC

Fitting by the standard linear model 0.001 (-0.006, 0.007) 0.87

Fitting by the two-piecewise linear model

Infection point 49.5

serum 25(OH)D < Infection point 0.019 (0.001, 0.038) 0.04*
serum 25(OH)D� Infection point -0.005 (-0.013, 0.003) 0.23

P for Log-likelihood ratio 0.03*
HDL-C

Fitting by the standard linear model 0.001 (-0.001, 0.003) 0.20

Fitting by the two-piecewise linear model

Infection point 32.6

serum 25(OH)D < Infection point -0.030 (-0.050, -0.010) < 0.01**
serum 25(OH)D� Infection point 0.002 (0.000, 0.004) 0.03*

P for Log-likelihood ratio < 0.01**
LDL-C

Fitting by the standard linear model 0.001 (-0.005, 0.007) 0.79

Fitting by the two-piecewise linear model

Infection point 58.7

serum 25(OH)D < Infection point -0.004 (-0.018, 0.011) 0.63

serum 25(OH)D� Infection point 0.003 (-0.006, 0.012) 0.52

P for Log-likelihood ratio 0.49

HDL-C/LDL-C

Fitting by the standard linear model 0.001 (-0.001, 0.002) 0.23

Fitting by the two-piecewise linear model

Infection point 102

serum 25(OH)D< Infection point 0.000 (-0.001, 0.002) 0.76

serum 25(OH)D� Infection point 0.003 (-0.001, 0.007) 0.14

P for Log-likelihood ratio 0.24

Sex, age, each particular race, BMI, smoking, heavy alcohol, diabetes, hypertension, vigorous physical activity,

education level, and marital status were adjusted.

* P <0.05,

** P <0.01.

https://doi.org/10.1371/journal.pone.0297873.t004
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shown by our linear and two-piecewise regression models, in which some of the associations

were lost after the additional adjustment for BMI, but some remained. In accordance, previous

studies on mouse and human hepatoma cells indicated that the activation of the VDR (Vita-

min D Receptor) inhibited the expression of FXR (Farnesoid X Receptor). This inhibition, in

turn, led to the suppression of CYP7A1 (a cholesterol 7α-hydroxylase) expression, ultimately

resulting in reduced cholesterol levels [41–43].

Our findings are in accordance with the previous studies in other populations [33, 40, 46–

50]. However, the underlying mechanisms of the found associations are still unclear, and more

research is warranted. Particularly, it is not clear why there are positive associations with the

adverse lipid levels for vitamin D levels lower than the inclination points and why there is no

influence on the LDL-C levels, while total TC levels are influenced. One of the possible expla-

nations for the latter is that very low-density lipoprotein cholesterol (VLDL-C) levels, which

are associated with TG levels, are also part of the TC levels, and that probably this fraction of

TC is the most influenced by vitamin D. Of note is also that in the NHANES surveys the

LDL-C values were not directly measured but were calculated according to the Friedewald

equation, and this equation is not appropriate for the subjects with TG levels above 4.5 mmol/

L [51].

Even though we observed quite different associations between serum 25(OH)D concentra-

tions and lipid levels in the three occupational groups, we cannot give an explanation for the

observed differences. One explanation is that the groups were not completely matched for

demographic and lifestyle factors, and there is enough evidence that sex, ethnicity, lifestyle,

and environmental factors (BMI, physical activity, dietary habits, alcohol consumption, smok-

ing, sun exposure, and environmental pollution) can significantly modulate the associations of

vitamin D with cardiovascular risk, including serum lipid levels [33, 46–50, 52–56]. For exam-

ple, in the AFF group, there was a higher percentage of women compared with the two other

groups, as well as a much higher percentage of the subjects of Hispanic origin, while in drivers

was a higher percentage of the subjects of the non-Hispanic Black origin and in miners was a

higher percentage of the subjects of the non-Hispanic white origin. Additionally, the percent-

age of those with vigorous physical activity, heavy alcohol consumption, and regular smoking

was higher in the group of miners. Interestingly, miners exhibited the highest serum 25(OH)D

levels, which is in accordance with some literature data [57]. One plausible explanation is the

strenuous physical work undertaken by miners, leading to increased lipolysis and release of 25

(OH)D from fat and muscle depots [58]. Studies have indicated that serum 25(OH)D levels

tend to rise after intense physical activity, and individuals who engage in regular exercise tend

to have higher 25(OH)D levels compared to sedentary individuals [53, 54]. Additionally, the

high proportion of heavy alcohol consumption among miners may also contribute to their ele-

vated vitamin D levels, as research suggested a positive correlation between alcohol consump-

tion and serum 25(OH)D levels [55, 59]. Moreover, the AFF workers often operate in regions

with harsh weather conditions, and they may encounter various chemical substances such as

pesticides, fertilizers, and insecticides, which can contribute to a range of adverse health out-

comes, as well as disturbed metabolism of vitamin D and lipids [16, 56]. It is important to note

that prolonged sunlight exposure does not result in excessive production of vitamin D3, as the

process of photo-conversion converts pre-vitamin D3 and vitamin D3 into their inactive

metabolites [60]. Consequently, individuals with AFF occupations do not benefit from pro-

longed UVB exposure but are at an increased risk of developing skin cancer [61]. The exposure

to various hazardous substances and prolonged presence in adverse environments can poten-

tially impact the endocrine system and other physiological systems of individuals engaged in

AFF, resulting in altered body metabolism compared to the general population [56]. This

could serve as an additional potential explanation for the divergent associations observed
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between lipid profiles and serum 25(OH)D levels in the AFF group within the context of our

study.

Study limitations

This study has several limitations, each potentially impacting our findings. Firstly, the cross-

sectional design hinders our ability to infer causality between vitamin D levels and lipid pro-

files. Secondly, there are significant seasonal variations in vitamin D levels between summer

and winter [62], but the lack of specific timing for vitamin D measurements, due to NHANES’

data limitations, may have introduced variability related to seasonal fluctuations in vitamin D

levels. This could lead to underestimation of vitamin D’s impact on lipid profiles. Thirdly, the

indirect measurement of LDL-C levels using the Friedewald equation, particularly inappropri-

ate for subjects with high TG levels, might have affected the accuracy of our lipid profile assess-

ments. Fourth, the lack of matching for demographic and lifestyle factors among the control

groups (traffic drivers and miners) and the AFF group could have introduced confounding

variables. And our reliance on the broader occupational categories provided by the NHANES

dataset inherently restricts our ability to distinguish between the varied roles and activities

within each occupational field. For instance, the mining sector encompasses a range of job

functions, from individuals operating cranes to those manually carrying heavy loads, as well as

others engaged in more mobile roles. Such distinctions are crucial for a nuanced understand-

ing of occupational impacts on health. This limitation underscores the necessity of more

detailed occupational analyses in future research. Providing clear definitions of the included

participants is essential for accurately interpreting the study’s findings and their implications.

Fifth, due to the relatively small sample size in the AFF group, many of the correlation analyses

were probably underpowered, especially when conducting subgroup analyses. Furthermore,

the broad categorization of the AFF group in NHANES might have masked the nuances of dif-

ferent occupations within this category, possibly leading to a misinterpretation of the relation-

ship between occupational exposure and vitamin D levels. Additionally, the absence of

detailed dietary data, which could significantly influence vitamin D levels, is a notable limita-

tion. Not accounting for this factor may have led to an incomplete understanding of the

sources of variation in vitamin D levels among participants.

Given the non-linear nature of the found relationship, further research is necessary to

determine the optimal vitamin D levels required for maintaining lipid balance across different

populations. Such information would be valuable for developing relevant nutritional recom-

mendations and clinical intervention strategies to enhance cardiovascular health and prevent

cardiovascular diseases. However, despite these limitations, our results may provide a basis for

implementing regular assessments of vitamin D status in AFF workers and considering supple-

mentation in individuals with vitamin D deficiency or insufficiency to prevent an increase in

blood lipids.

Conclusions

In conclusion, our study highlights the intricate interplay between serum 25(OH)D levels and

lipid profiles in AFF workers. These individuals exhibit unique non-linear associations of

serum 25(OH)D levels with lipid profiles compared to other occupations. While further

research is needed to explore underlying mechanisms and develop tailored interventions,

maintaining adequate serum 25(OH)D levels may offer cardiovascular benefits to AFF work-

ers. This understanding could contribute to improved cardiovascular health within this

population.
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