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Longevity leap: mind the healthspan gap
Armin Garmany 1,2,3, Satsuki Yamada 1,2,4 and Andre Terzic 1,2,5,6✉

Life expectancy has increased by three decades since the mid-twentieth century. Parallel healthspan expansion has however not
followed, largely impeded by the pandemic of chronic diseases afflicting a growing older population. The lag in quality of life is a
recognized challenge that calls for prioritization of disease-free longevity. Contemporary communal, clinical and research trends
aspiring to extend the health horizon are here outlined in the context of an evolving epidemiology. A shared action integrating
public and societal endeavors with emerging interventions that target age-related multimorbidity and frailty is needed. A
multidimensional buildout of a curative perspective, boosted by modern anti-senescent and regenerative technology with
augmented decision making, would require dedicated resources and cost-effective validation to responsibly bridge the
healthspan-lifespan gap for a future of equitable global wellbeing.
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HEALTHSPAN-LIFESPAN GAP
The world population has tripled1, from 2.9 billion in 1950 to 7.8
billion in 2020 (Fig. 1A). The average life expectancy—a benchmark
of population health—has risen from 47 to 73 years of age in these
seven decades, a 26-year expansion1. This remarkable trajectory in
human longevity has generated a redistribution in demographic
structure underpinned by a disproportionate surge in those over
70 years of age (Fig. 1A). Consequently, the number of countries
with more than one-fifth of their population composed of those
over 70 years of age continues to grow (Fig. 1B). This transition in
aging demographics hinders global vitality1. Notably, the societal
triumph of longevity is plagued with debilitating morbidity,
accentuated towards the end of life.
Indeed, there is a recognized gap between lifespan, i.e., the total

life lived, and healthspan, i.e., the period free from disease2. Using
health-adjusted life expectancy, that considers life expectancy,
years lived with disability, and premature death from disease3, the
healthspan-lifespan gap is estimated at around 9 years (Fig. 2).
This gap appears refractory to current practice paradigms. In fact,
one-fifth of an individual’s life will be lived with morbidity4.
Extending lifespan alone without delaying disease onset and/or
reducing disease severity would actually aggravate the
healthspan-lifespan gap. A guiding principle in addressing the
healthspan-lifespan gap is in achieving health as “a state of
complete physical, mental and social well-being and not merely
the absence of disease or infirmity” per the World Health
Organization (WHO). In this regard, integration of scientific
breakthroughs with public and social programs is paramount
towards success in extending a healthy lifespan. Learning from
infectious disease control, remarkable success with river blindness
required discovery of the anti-parasite ivermectin (awarded the
2015 Nobel Prize) and its broad dissemination accelerated by a
drug donation program, achieving over 4 billion treatments and
reaching 300 million people/year. Thus, to ‘compress morbidity’
and ensure the fundamental right to wellness, healthspan
restoring strategies must evolve in unison of scientific, medical
and social innovation.

DISEASE AND FRAILTY CHALLENGE
Lifelong (also referred as “chronic” or “non-communicable”)
diseases are the leading cause of mortality and disability
worldwide5,6. Collectively, chronic diseases are responsible for
40 million or 71% out of 56 million annual deaths globally, and
79% of all years lived with disability7,8. Four common conditions,
namely cardiovascular diseases, cancer, diabetes, and chronic
respiratory diseases, account for 80% of chronic disease related
deaths9. The imposed socioeconomic burden is estimated to
represent a $47 trillion loss over the last two decades10. Fifty-eight
percent of chronic disease-related mortality occurs in persons
over 70 years of age. This growing age segment thus warrants
special attention.
Age-associated outcomes are profoundly aggravated by frailty,

a multisystem decline characterized by increased vulnerability.
Frailty and associated geriatric syndromes are under-recognized
despite engendering poor quality of life, disability, falls, hospita-
lization, long-term care, and mortality11,12. Assessment instru-
ments use features of the “fraility phenotype” (weakness, slow gait
speed, low physical activity, exhaustion, and unintentional weight
loss) and “fraility index” (accumulative deficit) to identify and
quantify frailty12,13. Present in around 25% of those older than
80 years of age and increasing in prevalence amongst younger
age segments, frailty is accentuated by poor lifestyle choices and
disproportionately affects those of lower-socioeconomic status
and women, impeding equitable healthcare14–16. Responsible
action plans should thus help re-design life in aging, aspiring to
achieve quality with quantity.

A GLOBAL RESPONSE
A series of programs, catalyzed by the United Nations (UN)
General Assembly resolution 265, have been launched to lessen
the escalating burden of non-communicable diseases. In concert
with the UN Sustainable Development Goals17, WHO outlined
2025 targets for mortality reduction in 30–70-year-old indivi-
duals18,19. In parallel, professional healthcare organizations have
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stressed the relevance of disease-free life, exemplified by the
American Heart Association 2030 Impact Goal set to lengthen by
three years health-adjusted life expectancy20. Moreover, WHO has
proclaimed 2021–2030, a decade of healthy aging21. Healthspan-
centered actions will require an increasingly concerted, multi-
dimensional effort that utilizes public health initiatives, acts on
social determinants of health, and capitalizes on emerging
technologies to equitably add value to senior life. Highlighting a
multidimensional strategy for measurable goals, osteoporosis
management combines diet and lifestyle interventions22,
evidence-based screening23 and cost-effective therapy24. Accord-
ingly, progress towards healthy longevity is further outlined below
leveraging a communal, clinical, and research intersection (Fig. 3).

THE COMMUNAL DIMENSION
Public health initiatives
Public initiatives, incorporating nutrition, water access, hygiene,
vaccination, and antibiotics, have advanced primal disease

prevention and reduced mortality. Furthermore, addressing
modifiable risk factors, namely excess weight, physical inactivity,
smoking, and poor diet, would prevent 80% of deaths from non-
communicable diseases, corresponding to 57% of all deaths25. For
conditions associated with non-modifiable risk factors (e.g.,
gender, genetic make-up), management goals include delay of
disease onset and/or mitigation of disease severity. Enduring
public initiatives are a recognized prerequisite for realizing healthy
aging (Fig. 3). Large scale approaches rely on measurable
multidimensional goals to modify the social and physical
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Fig. 1 Global aging demographics. A The world population continues to grow and has reached nearly 8 billion people (bars). A preeminent
increase has occurred in those older than 70 years of age (blue line), outpacing those younger than 70 years of age (pink line). B While in 1950
a ‘youthful’ age distribution (green) typified all geographies, by 2020 a fourth of the globe had transitioned to an ‘aging’ structure (white).
Forecasts for 2100 imply that over 80% percent of all territories/areas will exhibit an ‘aging’ or ‘advanced aging’ composition (orange). Percent
of population ≥70 years of age is stratified and color-coded in <10% (green), 10–20% (white), and ≥20% (orage) strata.
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Fig. 2 Healthspan-lifespan gap. Lifespan is the total number of
years lived by an individual. Healthspan is the number of disease-
free years lived. Life expectancy and health-adjusted life expectancy
are population-level measures of lifespan and healthspan, respec-
tively. A gap of 9-year is deduced from comparing 2020 data for
median probabilistic projection of life expectancy and health-
adjusted life expectancy.
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Fig. 3 Healthspan extending toolkit. Healthspan extending strate-
gies are comprehensive, relying on the unison of social, clinical and
scientific programs. Societal initiatives include public health
promotion and targeting of social determinants. Augmented
decision making, harnessing multimodal datasets, has enhanced
clinical management in the elderly. Breakthroughs in the anti-
senescence and regenerative arsenal aim at curative solutions.
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environment through banning public smoking, enforcing nutrition
labeling, and regulating advertising and industry26,27. Tobacco use
is a distinctive, avoidable risk underlying 8 million deaths per year,
and is a declared ‘global health emergency’28. Five billion people
worldwide are now covered by WHO-led MPOWER control
measures encompassing use, prevention policies, protection from
tobacco smoke, cessation programs, danger warning, bans on
advertising, and raising taxes. Thus, emphasis on early prevention
and optimization of public architecture that influence health
decisions is essential29.

Social disease determinants
In concert with influencing health behaviors, addressing the social
basis of disease30 is vital. Childhood adversity, social alienation,
maladaptive socioeconomic status, and compromised healthcare
access are all associated with health inequality and reduced
lifespan31,32. The level of attained education, work environment,
prevailing wages, labor schedule, and reliability of work have
serious bearing on lifestyle choices imposing disease risk33,34.
Thus, reconciling and ameliorating structural underpinnings are
critical to promote equitable health in the era of lifelong
multimorbidity and population aging (Fig. 3). Correcting for social
causes, in accord with public health initiatives, complements care
strategies for the elderly, all essential in reducing disease burden.
Collectively, interventions aimed at public and social determinants
mitigate disease risks and lead to disease avoidance, namely
primary prevention. Limiting poor outcomes of existing health
issues, i.e., secondary, and tertiary prevention, demands additional
clinical and research efforts.

THE CLINICAL DIMENSION
Targeting multimorbidity
Addressing degenerative diseases in the elderly is a recognized
priority of healthcare systems (Fig. 3), as over half of individuals
over the age of 70 present with chronic multimorbidity. Decipher-
ing disease pathobiology has led to new therapeutic avenues.
Case in point, cancer therapies have been upgraded using
biomarkers that inform personalized management35–38. Identifica-
tion of tyrosine kinase inhibitor-responsive epidermal growth
factor receptor variants in a subset of non-small cell lung cancer,
and over-expression of human epidermal growth factor receptor 2
in breast cancer, offer guidance for molecular trait-refined
individualized treatments39,40. In the elderly, precision biologics
as adjuvant therapy are improving cancer care protocols,
particularly for those susceptible to chemo-toxicity41. Disease
substrates have been unmasked using newer molecular systems
analytics (e.g., transcriptome, epigenome, proteome, metabolome,
lipidome, microbiome)42. In cardiology, suggested benefit of
hyperlipidemic control has been tested in a contemporary cohort
study demonstrating prevention of myocardial infarction and
atherosclerotic disease even in centenarians treated with statins43.
Senior individuals are however commonly excluded from clinical
trials, necessitating careful assessment of safety and efficacy in
real world practice44.
The Hippocratic tenet “first do no harm” embodies the

enduring principle of medicine, underscored in the National
Commission for the Protection of Human Subjects of Biomedical
and Behavioral Research axiom ‘maximize possible benefits and
minimize possible harms’. In the elderly, a point of vulnerability is
the risk of unplanned hospitalizations provoked by serious
adverse drug reactions45. Commitment to non-maleficence is
highlighted in evidence-based guidelines, including the Amer-
ican Geriatric Society’s Beers Criteria which outline drugs likely to
produce unwanted actions in the elderly46. Effective pharma-
cotherapy for geriatric patients requires careful consideration of
over- and under-prescription47. Optimal therapy relies on

vigorous pharmacovigilance and shared decision making48.
Decoding of the human genome has promoted the development
of pharmacogenomics, providing evidence for inherent variation
in pharmacodynamics and pharmacokinetics. Best studied,
carriers of certain cytochrome P450 2D6 variants exhibit altered
metabolism of drugs for pain management, cancer, and
depression, medications broadly prescribed in the elderly49.
Moderating dosage or giving alternatives, guided by recipient
genotype, can maximize therapeutic outcome. Recently, pilot
studies have begun to determine the utility of implementing
pre-emptive pharmacogenomics in the clinical setting with focus
on patient benefit. Rollout of pharmacogenomics in practice can
be done at point-of-care, or proactively to augment future
therapy decision making, and would require decisive return on
investment and effective integration into a clinically actionable
care plan. Powered by expanding translational experience,
science-driven advances in individualized care are positioned
to improve disease management.

Augmented decision support
The digital health revolution has led to the acquisition of massive
clinical data in diverse populations. Evidence-based care
guidance is improved through build-out of robust electronic
health record systems50. Contemporary, high-capacity, real-time
data processing for personalized decision making is further
augmented by machine learning modalities51. Artificial intelli-
gence is deployed at the bedside to enhance human-guided
analytics for diagnosis, prediction, and management for at-risk
populations in the era of high-definition medicine (Fig. 3).
Computational modeling helps to identify adaptive therapy
regimens which outperform standard protocols, as exemplified
in cancer care for multiple myeloma and breast cancer52–54.
Broadly, geriatric oncology programs, prioritizing education,
clinical practice, research, and strengthening collaborations
and partnerships, are rapidly evolving to further the quality of
care for older adults55. These prototypes are applicable in
equivalent solution plans across the non-communicable disease
spectrum56,57. Collectively, artificial intelligence-guided plat-
forms, albeit nascent, hold promise for managing complex
conditions in the aging population.

THE RESEARCH DIMENSION
Targeting senescent cells
Cellular senescence and stem cell exhaustion, in conjunction with
prime pathological states, such as genomic instability, telomere
attrition, and mitochondrial dysfunciton, are hallmarks of aging58.
Accordingly, addressing depletion or dysfunction in resident
progenitor pools, concomitant accumulation of senescent cell
load, and/or sterile inflammation are all considered in improving
healthspan (Fig. 3)59–61. Removal of unhealthy cells that secrete
pro-senescent paracrine factors has recently gained attention as
an anti-aging strategy with assessment of senotherapeutics to
selectively kill senescent cells or suppress associated pathophe-
notypes62,63. Pilot trials with first-generation senolytics report a
decrease in senescent cell load, reduced inflammation, and frailty
alleviation64, yet establishing definitive efficacy needs additional
research and development65. In parallel, ambitious marketing
creates a hype, adding to expectations of an otherwise vulnerable
population. While conceptually attractive, senolytics must achieve
increased specificity for senescent cells and restrict local tissue
impact to minimize unwanted effects.

A regenerative paradigm
Innate homeostatic and regenerative capacities decline with
aging66. Elderly care demands special consideration in minimizing
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or delaying irreversible outcomes. Case in point, a third to a half of
patients that survived a myocardial infarction will develop heart
failure with a 50% mortality within 5 years67. The evolving
knowledge in regenerative sciences is offering tools to halt or
reverse refractory disease progression, transforming the goals of
disease management ‘from care to cure’68–70 (Fig. 3). A dedicated
framework of regulatory science, quality control, and bioethics has
been deployed for responsible translation of a versatile regen-
erative medicine toolbox into validated patient delivery71.
The clinical readiness of regenerative therapies is maturing in

age-related disease. In particular, regenerative immunotherapies
have enhanced cancer management options. Chimeric antigen
receptors, expressed in immune cells to combat antigen-
expressing cancer cells, have been adapted for autologous
delivery in hematological malignancies72. To contribute to
physical and psychosocial quality of life in cancer survivors,
tissue reconstruction after life-saving resection surgery has been
tested. Examples include airway transplant enhanced by cryo-
preserved allogeneic aortic graft in patients with end-stage
tracheobronchial disease73, and vascularized lymph node transfer
for lymphedema after breast cancer surgery and/or radiation
therapy74. In parallel with optimization of regenerative biothera-
pies, advancements in clinical grade manufacturing and delivery
methods are ongoing, exemplified in the optimization of
cardiovascular stem cell use for heart failure75,76. While regen-
erative approaches show safety and signs of efficacy for aging-
associated diseases, regenerative therapies are yet to be fully
tailored for aging populations to maximize benefit77–79. In this
context, regenerative rehabilitation embodies a synergetic
integration of biomaterial science, physical therapy, and regen-
erative medicine, offering a proven exemplar for the build-out of
comprehensive models of care80,81. As a liberator from frailty and
disease, the regenerative paradigm of normative restitution seeks
to protect the person’s identity and help reclaim health82.
Achieving a desired level of function and quality of life
necessitates aligning regenerative feasibility with the values,
goals, and outlooks of each individual. Broader adoption would
require the roll-out of approved regenerative solutions that are
standardized, scalable, and accessible/affordable.

ECONOMIC CONSIDERATION
Aging imposed cost burden on society has accelerated major
investments into the high technology industry to harness anti-
senescent and regenerative modalities. Fueled by realized and
anticipated market returns83,84, the ongoing translation from
bench to bedside necessitates careful consideration of the value
proposition surrounding emerging therapies in the context of
extended longevity. Notably, anti-aging science increasingly aims
at developing prophylactic and curative interventions, promoting
a transition from traditional symptom mitigation in advanced,
disabling disease toward early, proactive health management85.

Enabling long-term cost-saving and cost-effective benefit, radical
curative solutions could pay-off the initial high costs that
compromise utilization and hinder wider adoption86. Case in
point, pilot real-world experience suggests reduction in cost of
care following the introduction of regenerative immunotherapies
in the treatment of blood cancers, such as lymphoma in Medicare
patients87–89. Furthermore, health economic simulation based on
initial clinical experience with cell therapy in Parkinson’s disease
supports realizable cost-saving within a decade in the treatment
of early onset degenerative conditions90,91. Similarly, stem cell-
derived ß cell therapy for diabetes has been predicted to provide
cost-benefit over life-long insulin therapy within an 8-year
horizon92. Notwithstanding, health economic evaluation of
advanced therapies remains limited and inconclusive93–95. Vali-
dated evidence of non-inferiority or superior efficacy from large
treated populations, cost-effective mass production across the
supply chain, and delivery within guidelines-recommended
standard-of-care would advance cost-effectiveness analysis,
necessary for fiscally sustainable decision-making96,97. Ultimately,
society must reach a consensus on the threshold to pay for the
value associated with the added benefit of validated emerging
therapy for adoption in daily practice.

AN EQUITABLE FUTURE
The steady rise in lifespan has been achieved but has not been
met with a proportionate increase in healthspan. Paralleling the
demographic transition is a multimorbidity and frailty burden,
accentuated in the pandemic of chronic diseases. The compro-
mised quality of life in the vulnerable elderly institutes a
significant healthspan-lifespan gap, a formidable challenge
confronting humanity. Contemporary hurdles across society,
science, and medicine in healthspan extension include lack of
transdisciplinary synergy, limited interdisciplinary resources
dedicated to long-term common goals, and gaps in implement-
ing high-definition science to medical practice in an equitable
real world98,99. Accordingly, the deployment of integrated
personal, communal, and global actions is a stated priority in
order to deliver shared benefit across individuals and society-at-
large (Fig. 4).
The SARS-CoV-2 viral outbreak and the ensuing COVID19

pandemic have tragically reminded us of the indispensable
value of health, and unequaled impact amongst vulnerable
populations100. The successful development of safe and
effective vaccines, within a record timeframe, symbolizes the
remarkable capabilities of modern science101. In contrast to
acute harm, however, a gradually progressing danger tends to
be under-recognized per analogy to the ‘boiling frog’ meta-
phor102. The insidious accumulation of chronic disease and
frailty must engender disruptive innovation. Targeting the root
cause at latent stages offers the prospect of implementing
proactive, prophylactic actions. Beyond constraining disease

Community
• Enable freedom from disease 
  across aging populations

• Ensure elderly integration 
  in the community

Individual
• Optimize lifelong care 
  for the whole person

• Validate healthspan 
  expanding solutions

Global
• Scale equitable access for 
  next generation cures

• Reduce the current lifespan-
  healthspan gap

Extended Health Horizon

Fig. 4 An equitable healthcare horizon. Healthy longevity mandates synchronized achievements at the individual, community, and global
level. For each individual, holistic lifelong care must encompass validated healthspan expanding options. Freedom from disease and
integration within the community must be ensured. Globally, in diverse populations, access to next-generation cures must be guaranteed to
equitably reduce the healthspan-lifespan gap.
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symptomatology, disease-free outcome would require achieving
enhanced intrinsic resilience against health-compromising
stressors. Growing regenerative options offer opportunities to
boost innate healing, and address aging-associated decline.
Diverse aging populations are thus at the cusp of a promising
horizon. Effective implementation of public health initiatives and
amelioration of structural determinants will be accelerated by
augmented decision-making and next-generation medical inno-
vation driving new options. This outlook for extended well-being
strives to achieve the ultimate goal that of health for all, to
universally protect the longevity dividend.
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