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Sarcopenia is a syndrome characterized by a decline in muscular mass, strength,

and function with advancing age. The risk of falls, fragility, hospitalization, and

death is considerably increased in the senior population due to sarcopenia.

Although there is no conclusive evidence for drug treatment, resistance training

has been unanimously recognized as a first-line treatment for managing

sarcopenia, and numerous studies have also pointed to the combination

of nutritional supplementation and resistance training as a more e�ective

intervention to improve quality of life for people with sarcopenia. People with

both malnutrition and sarcopenia have a higher mortality rate, so identifying

people at risk of malnutrition and intervening early is extremely important to

avoid sarcopenia and its associated problems. This article provides important

information for dietary interventions in sarcopenia by summarizing the discoveries

and developments of nutritional supplements such as protein, leucine, β-hydroxy-

β-methylbutyric acid, vitaminD, vitaminC, vitamin E, omega-3 fatty acids, creatine,

inorganic nitrate, probiotics, minerals, collagen peptides, and polyphenols in the

management of sarcopenia.
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1. Introduction

After the age of 50, muscle mass declines at a rate of 1%−2% per year in healthy adults,
while muscle strength declines at a rate of 1.5% per year (1, 2). Sarcopenia was defined
by the European Working Group on Sarcopenia in Older People (EWGSOP) in 2010 as
“a syndrome characterized by progressive and generalized loss of skeletal muscle mass and
strength with a risk of adverse outcomes such as physical disability, poor quality of life, and
death” (3). In 2018, the EWGSOP updated the definition, and muscle strength and function
are now put in front because the two are more important than muscle mass (4). Sarcopenia
is a major public health concern because it affects 20% of people over the age of 70 and 50%
of people over the age of 80 (5). Currently, 6%−19% of the global population over the age of
60 suffers from sarcopenia (6).

Sarcopenia should be suspected in patients who present with signs or symptoms such
as falls, feeling weak, walking slowly, difficulty rising from a chair, weight loss, or muscle
wasting, and EWGSOP2 recommends screening and evaluation starting with the Simple
Five Item Scoring Questionnaire (SARC-F) (4). When low muscle strength is tested by grip
strength or chair stand, it is considered very likely to have sarcopenia, because according to
EWGSOP, the diagnosis of sarcopenia is “lowmusclemass and lowmuscle function (strength
or performance),” while muscle strength is the center of the diagnostic process (3). The Asian
Working Group for Sarcopenia (AWGS) 2019 consensus defined “probable sarcopenia” as
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low muscle strength or physical fitness, specifically used in primary
care or community-based health promotion (7). In addition, low
muscle mass can be measured by instruments such as DXA,
BIA, CT, and MRI. The severity of sarcopenia can be determined
by measuring physical performance, such as gait speed, SPPB,
TUG, and 400m walk (4). Ideally, a primary care physician
should begin screening older adults at risk for sarcopenia, then
diagnose them through the use of appropriate diagnostic tools,
and begin treatment as early as possible. This will prevent delays
in the diagnosis and management of sarcopenia. Common tools
for screening and diagnosing sarcopenia and their respective
advantages and disadvantages are shown in Table 1.

It has been reported that older residents at risk of malnutrition
in Asian communities range from 16 to 73% (9), and the combined
prevalence of moderate to high malnutrition risk among elderly
people in Europe is 48.4% (10). In Latin America, two out of
every five hospitalized patients are at risk of malnutrition (11).
Malnutrition increases the risk of sarcopenia by two to three times,
and people with sarcopenia who are undernourished have a higher
mortality rate (12, 13). According to the AWGS consensus, older
adults who present with low body mass index (BMI), unintentional
weight loss, and low muscle mass or exhibit poor muscle strength
at any time should be assessed for malnutrition, and those at risk
of malnutrition should be rescreened every 3 months (9). Some
evidence has shown that adequate intake of protein, vitamin D,
antioxidant nutrients, and long-chain polyunsaturated fatty acids is
beneficial for improving sarcopenia (14). Healthcare professionals
are advised to provide nutritional counseling on dietary habits for
older adults with sarcopenia and to collaborate with a dietitian
to develop a diet and protein optimization plan for the patient
(15). Therefore, identifying individuals at risk for malnutrition to
provide early intervention is an important public health strategy to
prevent the development of sarcopenia and related complications.

2. Nutritional intervention for
sarcopenia

2.1. Protein, leucine,
β-hydroxy-β-methylbutyric acid

2.1.1. Mechanisms
On themetabolic front, temporal fluctuations inmuscle protein

synthesis (MPS) and muscle protein breakdown (MPB) rates
determine the net increase or decrease in skeletal muscle protein,
which continuously remodels skeletal muscle mass. Protein
degradation exceeding protein synthesis results in a negative
nitrogen balance and triggers sarcopenia. Dietary protein or amino
acid intake is the primary physiological stimulus for MPS (16),
stimulating muscle protein synthesis, increasing muscle mass, and
reducing muscle loss during bed rest and aging (17).

First, the ubiquitin–proteasome system (UPS) is the major
pathway for cellular protein degradation, and studies have
demonstrated that activating the UPS leads to increased protein
degradation and finally results in sarcopenia (18, 19), while protein
or amino acid nutritional support can effectively downregulate the
levels of MuRF-1 and Atrogin-1 and ameliorate UPP-mediated
sarcopenia (20, 21). Second, the oxidative response is one of the

inducers of sarcopenia (22). Protein or amino acid nutritional
support contributes to promoting Sirt1 expression, activating FoxO
family proteins, enhancing the expression of SOD, and reducing
the oxidative response (23). Third, enhanced autophagy evokes
sarcopenia (24). Protein or amino acid nutritional support can
enhance the activity of the PI3K/Akt/mTOR signaling pathway
to suppress cell autophagy (25). There are some potential
new mechanisms, including altering miRNA profiles and gut
microbiota (26).

2.1.2. Clinical studies
2.1.2.1. Protein

To measure the effect of protein supplementation on muscle
health, Hanach et al. analyzed 14 RCTs (27), with milk protein or
protein-based dairy products for not<12 weeks as the intervention.
The results showed that milk protein significantly increased limb
muscle mass, although there was no effect on grip strength or
leg muscle strength, and there was no conclusive evidence of an
effect on physical activity. Kirwan et al. (28) analyzed 28 RCTs and
showed that among older adults who performed resistance training,
those who consumed higher protein increased lean limb mass and
grip strength compared to controls who were supplemented with
lower protein; however, without resistance training, there was no
additional benefit from protein supplementation alone. In healthy
older adults from Asia and other countries, the combination of
protein supplementation and exercise significantly increased lower
extremity strength compared to exercise alone or placebo, although
no significant differences were found in upper extremity strength,
muscle mass, or gait speed (29). Therefore, it is recommended
to supplement protein in combination with resistance training to
increase muscle mass and strength (30). Regarding the relationship
between dietary protein intake and skeletal muscle mass, a cross-
sectional analysis of 3,213 middle-aged and elderly residents in
the mainland Chinese community found that participants who
consumed more than 0.96 g/kg of protein per day had higher
muscle mass than those who consumed no more than 0.96 g/kg
of protein per day (31). In elderly subjects aged 70–85 years,
those who consumed 1.5 g/(kg/day) of protein continuously for
12 weeks had higher skeletal muscle mass and mass index and
higher gait speed, while the other two groups (0.8 and 1.2 g/kg/day
of protein, respectively) did not differ significantly in terms of
muscle mass and physical performance (32). A dose-dependent
increase in whole-body net protein balance during recovery from
resistance exercise in older healthy men randomly assigned to
consume 0 g, 15 g, 30 g, or 45 g of milk protein concentrate
suggests that the dose of protein consumed after exercise is a
key factor in the magnitude of the muscle protein synthesis
response (33). The World Health Organization and the U.S. The
National Academy of Sciences currently recommends a protein
daily allowance (RDA) of 0.8 g/kg/day for adults, but this value
applies to all ages, regardless of gender, physical activity, or health
status. Evidence from RCTs in elderly populations, as well as the
protein requirements of elderly individuals measured using the
indicator amino acid oxidation (IAAO) technique, suggests that
this dose does not meet the physiological protein requirements
of elderly individuals. The estimated average protein requirement
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TABLE 1 Tools for screening and diagnosing (7, 8).

Category Disadvantages Advantages

Screening tools SARC-F questionnaire Low to moderate sensitivity Quick and easy to use

Anthropometry Measurement variability, lack of international
standardization

Cheap, easy to perform

Diagnostic tools Computed tomography (CT) Gold standard for skeletal muscle mass Expensive, high radiation

Magnetic resonance imaging (MRI) Cross-sectional analysis of muscle quantity and
mass, no radiation

High cost, complex operation, time-consuming

DXA (dual-energy X-ray absorptiometry) Precise analysis of body composition, very low
radiation exposure, operational

High cost

Bioelectrical Impedance Analysis (BIA) Accurate, inexpensive, simple, safe Susceptible to fluid changes, etc.

Ultrasound inexpensive, simple, safe Measurement accuracy to be verified

Anthropometry: Body mass index (BMI), mid-upper arm circumference (MUAC), calf circumference (CC), triceps skinfold (TSF).

(EAR) and RDA measured using IAAO technology were 0.94 and
1.24 g/kg/day in older men and 0.96 and 1.29 g/kg/day in older
women, respectively (34, 35). According to the European Society of
Clinical Nutrition and Metabolism (ESPEN), the diet of the elderly
should provide at least 1.0–1.5 g protein/kg body weight/day, with
25–30 g protein allocated to each meal (36). However, patients
with severe chronic kidney disease should limit their protein
intake. In summary, most studies confirm that protein intake is
positively correlated with muscle mass and strength and that higher
protein intake has a positive effect on skeletal muscle health during
aging. However, protein supplementation is not recommended
as an independent intervention to improve muscle mass and
strength. Protein supplementation only during resistance training
can significantly improve grip strength and physical function, and
the combination of the two can improve sarcopenia significantly
more than resistance training alone (37–39). There is bias and
heterogeneity in the evidence for protein supplementation on
measures of muscle mass and the effects of strength and physical
performance, and differences in the type and dose of protein
supplementation, as well as variations in exercise regimen and
duration, need to be taken into account when interpreting the
results. More carefully designed large-scale randomized controlled
trials exploring the effects of protein supplementation on these
measures are needed in the future.

The quality and digestibility of proteins are distinguishing

features between animal and plant proteins, with differences in

amino acid content and absorption kinetics. Animal proteins

such as meat, fish, and dairy products are consistently high-

quality proteins, while plant proteins vary in quality depending on

the sources, with soy protein being recognized as a high-quality
plant protein. Therefore, with respect to the quality of protein,

animal-derived protein may be more effective in maintaining

muscle health. Regarding potential differences between animal
and plant proteins affecting muscle health, a meta-analysis of 16
RCTs (51) showed that protein sources did not affect changes
in absolute lean body mass or muscle strength; however, animal
protein was more beneficial for percent lean body mass. It was
shown in a retrospective study that men and women with higher
animal protein intake had higher percentages of skeletal muscle
mass regardless of physical activity, while the beneficial effects
of plant protein were only shown in physically active adults

TABLE 2 Nutrients that may improve sarcopenia and recommended

intake.

Nutrients Recommended intake dose

Protein 1–1.2 g/kg/day for healthy elderly, 1.2–1.5 g/kg/day for the
malnourished, or 25–30 g protein per meal (36)

Leucine 2.5–2.8 g per meal (36)

HMB 3 g/day (40)

Vitamin D 800–1,000 IU/day (41)

Vitamin E 400 IU/day (42)

Vitamin C 45 to 90 mg/day (43)

Magnesium 300 mg/day for men and 270mg per day for women (44)

Selenium 25–75 µg/day (45)

Calcium 1,000–1,200 mg/day (46)

Probiotics 400 µg/day (47)

Inorganic nitrate 3.7 mg/kg/day (48)

Collagen 50 mL/day (49)

Polyphenols >500mg (50)

(52). In contradiction to these findings, a negative correlation
between walking speed and relative animal protein intake and a
positive correlation with relative plant protein intake have also been
reported (53). Gazzani et al. (54) also supported the positive effect
of plant proteins on physical performance and suggested that this
could be related to other components of plant foods that affect
muscle mass and strength, such as antioxidants. It is unclear how
protein intake from different sources provides the best benefit for
preventing sarcopenia, and further research is needed to refine
protein dietary guidelines that promote muscle health.

2.1.2.2. Leucine

Amino acids are important raw materials for protein synthesis,
and their homeostasis is essential for maintaining muscle health.
Muscle protein synthesis is regulated at multiple physiological
levels, including dietary protein digestion and amino acid
absorption, visceral amino acid retention, postprandial insulin
release, skeletal muscle tissue perfusion, muscle uptake of amino
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acids, and intracellular signaling in myocytes (55). Therefore, some
scholars have proposed that the anabolic potential of proteins
correlates with amino acid composition, which is supported by
the finding that plasma concentrations of leucine, isoleucine, and
tryptophan are reduced in patients with sarcopenia (56). Synthesis
by activating rapamycin complex 1 (mTORC1), a target that acts
as a “switch” for the MPS process, which initiates translation
in the intracellular signaling cascade (57). Thus, the “leucine
trigger” hypothesis has been proposed, which predicts that the
magnitude and rate of postprandial blood leucine increase may
modulate the magnitude of the postprandial MPS response to
protein intake. Sixteen of the 29 eligible studies provided sufficient
evidence to support the hypothesis (58). Thus, leucine content
may be a key factor in promoting the muscle protein synthesis
response. The effect of 25 g of whey protein on maintaining
skeletal muscle protein synthesis and improving muscle loss is
similar to that of 10 g of milk with leucine in older adults
(59). Compared to isonitrogenous protein drinks, protein drinks
with higher concentrations of leucine are more beneficial for
myogenic fibronectin synthesis (60). Leucine supplementation has
been reported to have beneficial effects on body weight, body
mass index, and lean body mass in older adults with a tendency
toward sarcopenia, although the effects on muscle strength are
inconclusive (61). Besides, according to a systematic review, protein
supplements rich in leucine can improve markers of sarcopenia,
regardless of physical activity, however, leucine supplementation
alone and no exercise did not improve sarcopenia (62). Current
evidence tends to recommend a higher intake of leucine in older
adults to increase muscle mass. Considering the importance of
leucine in muscle protein synthesis, leucine requirements in elderly
individuals, measured using the indicator amino acid oxidation
method, are more than twice the current recommendations,
averaging 77.8 mg/(kg/day) for men and 78.2 mg/(kg/day) for
women (63).

2.1.2.3. β-hydroxy-β-methylbutyric acid

β-hydroxy-β-methylbutyric acid (HMB) is a metabolite of
leucine. The International Society of Sports Nutrition believes
that HMB can reduce exercise-induced skeletal muscle damage
and is most effective when consumed for two consecutive weeks
before exercise, so athletes are recommended to take 38mg per
kg of body weight per day to promote their skeletal muscle
growth and improve strength (64). The manufacturer usually
recommends taking 3 g of HMB per day (40), the dose being
equivalent to the intake of 60 g of leucine (65). However, if
60 g of leucine is consumed directly, the activity of rate-limiting
enzymes for catabolism increases, and the oxidation of branched-
chain amino acids increases, which can lead to depletion of valine
and isoleucine in body fluids and ultimately an imbalance in the
concentration of branched-chain amino acids, thus possibly having
a negative impact on protein metabolism (66); however, there
is wide heterogeneity in the conclusions drawn from published
articles regarding the effects of HMB supplementation on muscle
health and physical performance. Supporting research findings
indicate that HMB intake promotes both upper and lower-
extremity muscle strength in older adults (67). Supplementation
with 3 g of HMB is most beneficial for improving strength and
body composition in people over 65 years of age, especially when

bed-rested and untrained (68). In the opposing study, Phillips
et al. (69) stated through systematic evaluation and meta-analysis
that the current evidence is insufficient to assess the effects
of HMB supplementation on muscle function, as the evidence
supports little and is inconsistent. In a randomized controlled trial
carried out among 40 young adult men (70), the intervention
group was supplemented with the leucine metabolites alpha-
hydroxyisocaproic acid (α-HICA) and β-hydroxy-β-methylbutyric
acid (HMB); as a result, supplementation with leucine metabolites
did not enhance resistance training-induced changes in muscle
thickness compared to placebo (71). In conclusion, more high-
quality primary studies are needed in the future to investigate
the effects of HMB in patients with sarcopenia, and the
current evidence does not yet provide unambiguous support for
recommending HMB supplementation to alleviate sarcopenia.

2.2. Vitamins

2.2.1. Vitamin D
2.2.1.1. Mechanisms

The vitamin D/VDR axis plays a key role in regulating
biological processes central to sarcopenic muscle atrophy, such
as proteolysis, mitochondrial function, cellular senescence, and
adiposity (72). First, vitamin D deficiency appears to lead to
increased muscle protein breakdown via the ubiquitin-proteasomal
pathway (UPP) and autophagy and upregulation of AMPK
and members of the renin-angiotensin system (73, 74). Second,
permanent exit from the cell cycle (senescence) is a critical aging
phenomenon, and the vitamin D/VDR axis has been shown to have
regulatory control (75). Third, low vitamin D states may lead to
impairedmitochondrial function (76), and active 1,25(OH)2D3 can
increase oxygen consumption rates and fission/fusion dynamics
(77, 78). Fourth, low vitamin D states may lead to increased
adiposity in muscle (79), and those who are overweight have an
increased risk of deficits in muscle mass and function (80).

2.2.1.2. Clinical studies

Vitamin D is a fat-soluble vitamin synthesized in the skin,
90% of which comes from UV exposure and 10% from the diet.
Vitamin D deficiency is now considered a global public health
problem, and elderly individuals are at greater risk of vitamin D
deficiency due to poor intestinal absorption, reduced sun exposure,
and chronic renal insufficiency. Lower 25-(OH)-VD levels are
thought to be associated with adverse changes in muscle mass
and physical function (81). Yang et al. (82) fed mice a vitamin D-
deficient diet for 24 weeks and immobilized them to determine the
extent of skeletal muscle atrophy. As a result, vitamin D deficiency
accelerated the decrease in gastrocnemius muscle mass, muscle
fiber cross-sectional area, and grip strength; moreover, vitamin D
supplementation inhibited the decrease in grip strength. The team
also performed a cross-sectional analysis of 4,139 older adults, and
linear regression analysis showed that serum 25 hydroxyvitamin D
and physical activity were linearly associated and interacted with
timed running time and grip strength. However, in another study in
which the control group took a placebo daily and the intervention
group took 800 IU of vitamin D orally daily, no differences were
found between the two groups in leg push-up strength, function,
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or lean body mass after 1 year (83). According to the systematic
reviews and meta-analyses, vitamin D supplementation alone did
not improve muscle strength or SPPB scores, on the contrary,
significantly decreased SPPB scores (84). When vitamin D was
taken together with whey protein and leucine, the muscle mass of
the limbs of patients with sarcopenia could be effectively increased
even without physical exercise, and when combined with physical
exercise, not only muscle mass increases but muscle strength and
performance could also be significantly improved (85). However,
we cannot be sure of the effectiveness of vitaminD supplementation
alone, due to the presence of protein and amino acids. In summary,
the exact role of vitamin D supplementation in the prevention
and treatment of sarcopenia remains uncertain due to the high
heterogeneity of studies and the conflicting results of RCTs.

2.2.2. Vitamin C and vitamin E
2.2.2.1. Mechanisms

With aging, the body’s endogenous antioxidant defense system
is impaired, and excessive accumulation of reactive oxygen species
(ROS) in the body leads to oxidative muscle damage, which
may be directly or indirectly involved in skeletal muscle atrophy
(86). In addition, mitochondrial dysfunction occurs abnormally
during muscle aging, which has been associated with aberrant
ROS generation and oxidative damage (87). Antioxidant vitamins
are thought to prevent oxidative stress and may be able to
play a role in the treatment of sarcopenia. Therefore, whether
antioxidant supplementation can improve age-related muscle
mass and performance is becoming an issue of interest to
researchers. Vitamins C and E are widely used antioxidant vitamins
that have the ability to scavenge ROS and enhance cellular
antioxidant capacity.

2.2.2.2. Related studies

Vitamin E is composed of two subgroups called tocopherols
and tocotrienols. There are four isomers of tocopherols and
tocotrienols (α, β, γ, and δ) depending on the number and location
of the methyl groups, and their main dietary sources are vegetable
oils, nuts, seeds, fish, shellfish, and vegetables (88). In vitro,
studies have shown that alpha-tocopherol prevents myogenic cell
atrophy and increases myotube survival (89), and the tocotrienol-
rich fraction reverses the aging of myogenic cells by increasing
the regenerative capacity of cells (90). Vitamin E contributes to
the recovery of myogenic cell membranes and has a potential
therapeutic effect on muscle cells (91), although further studies
are needed to confirm the mechanisms involved. In a cross-
sectional study, a significant positive association was found between
increased dietary vitamin E intake and skeletal muscle mass index,
bone mineral density status, and risk of total hip and hip fracture in
middle-aged and older men and women, with effects ranging from
0.88 to 1.91% (92).

Vitamin C is themajor water-soluble nonenzymatic antioxidant
in plasma and tissues and must be obtained through dietary intake
because it cannot be synthesized in vivo. A positive trend in
quintiles of dietary vitamin C and lean body mass measurements
suggests that dietary and circulating vitamin C is positively
associated with skeletal muscle mass measurements in middle-aged
and older men and women (93).

However, contrary studies have also been reported. In a
systematic evaluation and meta-analysis, vitamins C and E did
not promote muscle growth after strength training and may have
diminished muscle hypertrophy over time (94). When young
athletes were given vitamin C and E supplements, despite serum
samples suggesting a reduction in oxidative stress in the body,
participants’ lower limb strength did not increase, and muscle
damage could not be reduced (95). In summary, based on the
existing evidence, there is not enough convincing evidence to
support the use of vitamin E and vitamin C for the prevention and
treatment of sarcopenia.

2.3. Omega-3 fatty acids

Omega-3 fatty acids (also known as n-3 fatty acids) are
polyunsaturated fatty acids with many potential health benefits
and are available in three main dietary forms: alpha-linolenic
acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3) and
docosahexaenoic acid (DHA; 22:6n-3). ALA is considered an
essential fatty acid because it cannot be synthesized in the human
body and is found in nuts, seeds, canola oil, etc. EPA and DHA are
mainly found in fish oil.

2.3.1. Mechanisms
Skeletal muscle atrophy involves an inflammatory phase that

leads to cell death and tissue remodeling and activates endoplasmic
reticulum stress (ERS) and autophagy (96, 97). Both EPA and
DHA potentially attenuate ERS and autophagy in skeletal muscles
undergoing atrophy by attenuating the increase in PERK and
ATG14 expression (98). In addition, DHA promotes mitochondrial
biogenesis and skeletal muscle fiber remodeling (99) and delays
muscle wasting by stimulating intermediate oxidative stress and
inhibiting proteasomal degradation of muscle proteins (100).

2.3.2. Related studies
It has been proposed that elevated plasma levels of

proinflammatory cytokines affect muscle catabolic and anabolic
signaling pathways and thusmay play a key role in the development
and progression of sarcopenia, with data showing significantly
elevated levels of IL-6 and TNFα in elderly Chinese individuals
with sarcopenia (101). Therefore, reducing chronic inflammation
associated with aging is emerging as a potential therapeutic target
for sarcopenia, and NSAIDs may not be recommended for the
treatment of sarcopenia due to the high risk of adverse events
that may occur with their use in elderly individuals. Increasing
evidence indicates that omega-3 polyunsaturated fatty acids
reduce the expression of inflammatory genes and have anti-
inflammatory activity (102), particularly eicosapentaenoic acid,
docosahexaenoic acid, and alpha-linolenic acid. It was concluded
from a systematic evaluation and meta-analysis that omega-3
fatty acid supplementation promotes lean body mass, skeletal
muscle mass, and isometric contraction maximal muscle strength
in the quadriceps (103). Dietary omega-3 fatty acid levels are
negatively associated with sarcopenia (104), and more than 2 g/day
of omega-3 fatty acids may increase muscle mass and improve
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walking speed, especially for those with sarcopenia who have
been receiving the intervention for more than 6 months (105).
However, linear regression analysis concluded that there was no
association between plasma omega-3 levels and grip strength in
older adults (106). When cancer patients were supplemented with
omega-3 fatty acids, their muscle maintenance, quality of life,
and body weight were not improved (107). According to expert
opinions (108), doses of 3,000 mg/day DHA plus EPA or more
(with preferably more than 800 mg/day EPA) may be required for
positive physical performance in older adults (109, 110), because
lower doses have no significant effects on muscle strength (111).
In conclusion, omega-3 fatty acids may improve sarcopenia, but
well-designed, large prospective cohort studies and randomized
controlled trials are needed to confirm these findings.

2.4. Creatine

Creatine is a natural nonprotein amino acid compound.
Approximately half of the daily creatine requirement comes from
the diet, mainly in red meat and seafood (112), and the other half is
synthesized endogenously in the kidneys and liver (113). Creatine
is mainly stored in muscle (95%), ∼2/3 is in the form of PCr, and
the rest is free creatine. Approximately 1%−2% of intramuscular
creatine is degraded to creatinine and excreted in the urine each day
(114, 115); therefore, the body needs to replenish∼1–3 g of creatine
per day to maintain normal creatine stores and to obtain the free
energy provided by catabolism, depending on muscle mass (116).

2.4.1. Mechanisms
The energy produced by phosphocreatine (PCr) degradation is

used to resynthesize ADP and Pi back into ATP to maintain cell
function. Increasing PCr and creatine in muscles provides energy
reserves to meet anaerobic energy needs, providing a critical source
of energy, especially during ischemia, injury, and/or response
to impairment (117, 118). Creatine has been shown to activate
signaling pathways in the muscle protein synthesis pathway (119),
and creatine also protects against mitochondrial damage caused
by oxidation, which may reduce inflammation and muscle damage
(120, 121).

2.4.2. Clinical studies
After examining the effects of different creatine dosing

strategies (lower: 5 g/day, higher: >5 g/day) and the presence
or absence of a creatine loading phase (20 g/day for 5–7 days)
on lean tissue mass and strength, overall, creatine increased lean
tissue mass and strength, but when studies involving a creatine
loading phase were excluded from the analysis, creatine had
no greater benefit on muscle mass and strength compared to
placebo and was effective only during the resistance training phase
(122). In another study, creatine supplementation significantly
increased upper extremity strength but had no effect on lower
extremity strength or muscle mass. However, when resistance
training was continued for at least 24 weeks, a significant increase
was found in upper and lower extremity muscle strength among
older females (123). Overall, creatine intake during resistance

training in older adults may increase lean tissue mass, as well
as muscle strength in the upper and lower extremities (124).
Therefore, it is recommended that older adults supplement creatine
concurrently with resistance training. Creatine supplementation
appears to enhance the muscular adaptive response to training by
increasing the ability to exercise at high intensities and enhancing
postexercise recovery and adaptation (125). Differences in creatine
dose and frequency of intake during resistance training need to
be considered when interpreting the heterogeneity between these
studies (126).

2.5. Inorganic nitrate

The health benefits of a diet rich in vegetables are partly
explained by their high nitrate content, which is an important
biologically active cardioprotective component of vegetables due to
its effects on endogenous nitric oxide and vascular health (127).
Approximately 80% of total dietary nitrate intake comes from
vegetables, with leafy greens and beet being the most abundant and
the rest from fruits and meat (128).

Skeletal muscle tissue is the largest reservoir of nitrate in the
body and one of the main sites of nitrate and nitrite metabolism
(129), which is sensitive to dietary nitrate intake, contributing
to nitric oxide production during exercise, and it enhances
human muscle contraction by increasing the free intracellular
calcium concentration and the calcium sensitivity of myofilaments
themselves (130, 131). A cross-sectional analysis revealed that
higher nitrate intake (mean 31.2 mg/day) is associated with
stronger grip strength and faster timed runs (132). Researchers
evaluated participants’ habitual dietary intake over 12 years in
a cohort study, and individuals with the highest nitrate intake
(mean 91 mg/day) had stronger knee extension and faster timed
starts, and the results were unaffected by physical activity (133). In
randomized controlled trials, nitrate is given almost in the form
of concentrated beetroot as an acute dose ranging from 6.4 to
15.9 mmol, and the results show that NO−

3 intake significantly
increases muscle strength, with an average increase of ∼5%
(134). Its potential benefits on muscle strength and endurance
are not affected by dose, frequency of intake, level of training,
muscle group, or type of contraction (135). It may improve grip
strength in older adults by accelerating muscle oxygenation and
muscle strength recovery after exercise (136). Most of the current
research suggests that a nitrate-rich diet has potential benefits
for muscle strength and physical function in older adults, but
due to the lack of research, more evidence is needed to validate
this claim.

2.6. Probiotics, prebiotics, synbiotics

Probiotics are beneficial bacteria that are mainly found in
our digestive system. Prebiotics are mainly oligosaccharides that
promote the growth and proliferation of beneficial bacteria
in the body but are not digested and absorbed by the host
(137). Preparations that mix probiotics and prebiotics are called
synbiotics (138), and the benefits of both are unified.
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2.6.1. Mechanisms
Changes in the structure of the intestinal flora are closely related

to human health and disease. The major phyla of the healthy
intestinal microbiota are the thick-walled phylum, the phylum
Bacteroidetes, the phylum Actinomycetes, and to a lesser extent,
the phylum Wolbachia and the phylum Aspergillus. In weak and
cachectic humans, these beneficial bacteria are reduced, while an
increase in opportunistic pathogens of Enterobacteriaceae occurs
(139). Probiotics promote the production of metabolites such as
short-chain fatty acids (SCFAs), secondary bile acids (BA), and
some amino acids that regulate homeostasis in skeletal muscle by
improving insulin sensitivity (140, 141). In addition, alterations in
the ecosystem composition of the gut microbiota, such as reduced
production of beneficial metabolites (e.g., SCFA) in the intestinal
lumen, lead to intestinal leakage and bacterial endotoxins such
as lipopolysaccharides (LPS) entering the peripheral blood (142),
producing systemic inflammation associated with aging andmuscle
wasting (143, 144). Probiotics can limit inflammation and oxygen
stress (145).

2.6.2. Related studies
The experimental model of germ-free mice provides valuable

evidence for the potential role of the microbiota in controlling
muscle mass and function. Compared to conventional mice, germ-

free mice, and antibiotic-treated mice, their muscle mass and

strength are decreased (146–148). Interestingly, this change in
muscle mass and function can be restored by transplantation of

microbiota or under natural conditions (146, 147). The elderly

were divided into high-functioning (HF) and low-functioning
(LF) groups based on physical function, stool samples from
both groups were transferred to germ-free mice, and grip
strength was significantly increased in mice with HF compared
to mice with LF (149). In mouse and human models, reduced
intestinal permeability usually coincides with improved muscle
mass or strength (150). The use of probiotics, prebiotics, and
synbiotics may thus reduce muscle mass loss by stimulating
the growth of the bacterial flora and restoring the balance of
the gut microbiome, ultimately resulting in a more beneficial
metabolite profile and lower intestinal permeability. COPDpatients
with sarcopenia who were continuously supplemented with a
multistrain probiotic for 16 weeks showed reduced markers of
intestinal permeability and neuromuscular junction degeneration
in plasma, along with improved grip strength, gait speed, and
SPPB scores compared to the placebo group (151). However,
the causal relationship between microbiota and muscle health
remains uncertain due to the lack of targeted studies and the
effects of a large number of covariates (including diet, exercise,
polydipsia, and multiple drugs) on microbiota composition and
function (152). In addition, specific strains that optimize muscle
mass and function are not yet available due to the scarcity
of human studies and the difficulty of accurate measurements.
Future studies should be conducted in humans and should
focus on the effects of different bacterial genera and strains on
microbiome balance, metabolite profiles, gut function, and muscle
mass in sarcopenia.

2.7. Magnesium, selenium, calcium, and
other minerals

Growing evidence shows that low micronutrient intake is
associated with an increased risk of sarcopenia (153). It has been
shown from systematic evaluations that patients with sarcopenia
have lower intakes of calcium, magnesium, sodium and selenium
than older adults with healthy muscles (154), and magnesium,
selenium and calcium appear to be the most promising minerals
for the prevention or treatment of sarcopenia (155).

Magnesium is involved in numerous physiological processes
as a cofactor in many enzymatic reactions, and it also plays an
important role in maintaining muscle mass and protecting muscle
tissue from oxidative damage (156, 157). Mg2+ supplementation
in aged mice induces myogenic differentiation, promotes
protein synthesis, provides protection against the loss of muscle
regeneration potential and muscle mass during aging, significantly
promotes muscle regeneration, and preserves muscle mass and
strength (158). The study suggests that intramuscular ionized
magnesium is negatively correlated with age and positively
correlated with the strength of knee extension in females. This
may be because females have chronic underlying magnesium
deficiency and therefore have significantly lower intramuscular
ionized magnesium than males (159). In a cross-sectional study
involving 2,570 women aged 18–79 years (156), a positive
association between dietary magnesium intake and skeletal muscle
mass and explosive leg strength index was observed, and data
from another prospective cohort study suggested that higher
magnesium intake is associated with greater grip strength and
higher skeletal muscle mass (157). In follow-up surveys over 5
years, increased magnesium intake was associated with increased
SPPB scores in older women, but no such association was observed
in men (160). Higher intake of magnesium has been shown
to be positively correlated with appendicular muscle mass and
change in appendicular muscle mass in a longitudinal study (161),
and positive associations between magnesium intake and grip
strength have been shown in a cross-sectional study (162). There is
some consistency in the current studies of magnesium’s ability to
improve sarcopenia, suggesting that magnesium supplementation
may slow age-related skeletal muscle mass loss, although the
evidence is mainly observational and cross-sectional studies.

Selenium is one of the essential trace elements, and it has
been reported that patients with selenium deficiency develop
skeletal muscle disease, manifested by muscle pain, fatigue,
proximal limb weakness, and elevated serum creatine kinase
(163). Although dietary supplements of selenium alone or in
combination with vitamins are being widely used, the effects
of selenium on muscle performance have not been adequately
studied. Experiments conducted in mice show that selenium
supplementation increases calcium release from the sarcoplasmic
reticulum, thereby improving skeletal muscle performance, and
that increased expression of selenoprotein N in muscle enhances
oxidative stress tolerance (164). Selenium concentrations were
found to be negatively associated with restricted physical function
in a cross-sectional study, with a reduced incidence of physical
frailty when baseline selenium levels were doubled (165). In the
only clinical randomized controlled study, combined vitamin E,
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vitamin C, zinc, and selenium supplementation for 17 weeks
improved maximal voluntary contraction and endurance limit
time in the quadriceps muscle by reducing oxidative stress and
enhancing antioxidant defense (166). Although selenium intake
is low in elderly individuals and correlated with poorer skeletal
muscle function, prospective analysis indicates no significant effect
of selenium intake on skeletal muscle function (167). Nevertheless,
the daily dietary intake of selenium is 20–75µg for adults according
to the EU recommendations (45). Since most of the evidence is
from observational studies, we are not yet able to conclusively
determine the effect of selenium supplementation in patients with
sarcopenia; thus, large randomized controlled trials are required in
the future to demonstrate this.

In the cross-sectional analysis, daily calcium intake was
negatively correlated with overall fat percentage and positively
correlated with extremity bone mass. After adjusting for age,
sex, BMI, total energy intake, and lifestyle factors, daily calcium
intake was significantly lower in patients with sarcopenia than in
those without sarcopenia (168). However, 6 months of calcium
supplementation does not have a significant effect on skeletal
muscle strength and serum testosterone in young adult men, as
found in one randomized controlled trial (169). There is a lack of
studies on the effect of calcium on patients with sarcopenia.

2.8. Collagen and collagen peptides

Collagen accounts for one-third of the total protein in the
human body, is the most abundant form of structural protein in
the body, and contributes about 65%−80% of tendon dry weight
(170). Extramyocellular connective tissue transmits contractility to
tendons and bone, and collagen is a core structural component
of extracellular connective tissue and is therefore essential for
the strength, regulation, and regeneration of this tissue (171).
Dietary collagens, such as collagen peptides or gelatin, are most
commonly extracted from the skin, bones, or scales of pigs, cattle,
and other poultry (172), and because they contain large amounts of
glycine and proline and hydroxyproline, similar to the amino acid
distribution of muscle connective tissue, it has been proposed that
increasing their intake may help to stimulate muscle connective
tissue synthesis to the greatest extent (173), thereby increasing
muscle mass and strength and improving sarcopenia possibly.

2.8.1. Mechanisms
Consumption of proline-rich and glycine-rich collagen may

be more suitable than high-quality protein sources such as casein
or whey protein (providing only 6% proline and 2% glycine) to
provide specific amino acid precursors required to support de

novo synthesis of connective tissue proteins since the amount of
glycine and proline provided in the usual diet is insufficient to
provide metabolism and promote increased rates of tissue collagen
synthesis (174, 175). In an in vitro model, tendons in growth
mediums containing proline and ascorbic acid showed increased
collagen content and improved mechanical properties (176). In
rats, a glycine-rich diet made the Achilles tendinitis model more
resistant to maximum tolerated loads (177). In addition, peptides

produced by collagen hydrolysis, which are easily absorbed in the
digestive tract before entering the circulation (178), can enhance
fibroblast elastin synthesis, while inhibiting elastin degradation and
promoting fibroblast proliferation (179), and thus may enhance
connective tissue remodeling in muscle.

2.8.2. Clinical studies
Regarding the effect of collagen supplementation on body

composition, Zdzieblik et al. (180) showed that elderly men with
sarcopenia exercised three times a week and ingested 15 g of
collagen peptide per day for 12 weeks, and their changes in
body composition were very significant, with a mean increase in
fat-free mass of 4.2 kg compared to only 2.9 kg in the placebo
group. The same test in young, healthy men resulted in a mean
increase in fat-free mass of 2.6 kg in the collagen peptide group
and only 0.7 kg in the placebo-supplemented group (181). In
premenopausal women, it was also found that the combination
of resistance training with collagen supplementation significantly
increased fat-free mass and increased hand grip strength. The
above studies showed that collagen peptide supplementation was
effective in improving muscle mass and strength while resisting
resistance exercise. Regarding the effect of collagen on muscle
protein synthesis, Oikawa et al. (182) supplemented 30 g of whey
protein or collagen peptide twice a day in older adults who lacked
physical activity and low-energy status, and only the whey protein
group enhanced fat-free mass and muscle protein synthesis in
the lower extremities during return to activity. Two other studies
have similarly observed increased muscle protein synthesis with
whey protein compared to collagen supplementation (183, 184).
This suggests that collagen has little anabolic potential compared
to isonitrogenous higher-quality protein sources. According to
systematic reviews and meta-analyses, collagen supplements are
most beneficial in reducing joint pain and improving joint function,
with some improvement in body composition, strength, andmuscle
recovery (170). In conclusion, collagen supplementation with
resistance exercise can increase muscle mass and strength, but there
is insufficient evidence that collagen is more effective in improving
sarcopenia than traditional high-quality protein sources such as
casein or whey protein.

2.9. Polyphenols

Polyphenols are a range of plant compounds with antioxidant
and anti-inflammatory properties containing one or more phenolic
rings attached to hydroxyl groups (185). They are divided into
four classes: phenolic acids, flavonoids, stilbenes, and lignans (186)
and are particularly abundant in fruits, vegetables, coffee, tea,
cocoa, vanilla, and spices (187). Because there are a wide variety
of polyphenols available and there are many factors that can alter
their concentration in food, it is difficult to establish reference
composition tables (188).

2.9.1. Mechanisms
The effects of polyphenolic compounds in dystrophia

are mainly through the inhibition of E3 ubiquitin ligases
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and upstream regulators in inflammation, oxidative stress,
and mitochondrial damage (189, 190). It also increases
protein synthesis by effectively activating the Akt/mTOR
pathway (191). Moreover, PPs modulated the expression of
miRNAs, IGF-1 signaling pathway, follistatin, mitochondrial
biogenesis, and myogenic differentiation factors involved in
myogenesis (192).

2.9.2. Related studies
Resveratrol (RSV) is a natural polyphenol. In animal

experiments, high doses of RSV (400 mg/kg/day) have been
reported to attenuate muscle fiber atrophy following hindlimb
suspension in rodents (193). Lower doses of RSV (5 mg/kg/day)
still promoted skeletal muscle hypertrophy and reduced
exercise-induced muscle necrosis in wild-type mice (194). In
clinical studies, elderly subjects were supplemented with 500
mg/day resveratrol during exercise, and muscle mitochondrial
density and muscle fatigue resistance were higher in elderly
subjects compared with placebo-supplemented groups (195).
Resveratrol at 1,000 mg/day increased the 6-min walk distance
by 33.1m in older adults, which was higher than the mean
walking distance in the 500 mg/day group (196). Patients with
chronic kidney disease received 500mg resveratrol and 500mg
curcumin orally daily, and muscle mass and bone mass increased
significantly after 12 weeks. However, no improvement in
walking ability with resveratrol was observed in elderly subjects
with peripheral arterial disease (197), mitochondrial function
in skeletal muscle was not improved and lean body mass was
decreased in COPD patients receiving 150 mg/day resveratrol
(198). To determine the effects of polyphenols on muscle,
multiple systematic reviews and meta-analyses have assessed
the effectiveness of polyphenols on muscle pain and muscle
recovery after exercise in healthy adults, and the results have
shown that consumption of polyphenol-rich foods, juices, and
concentrates accelerates the recovery of muscle function and
reduces muscle soreness at doses ranging from 150 to 1,500
mg/day (199–201). A meta-analysis suggests that polyphenol
supplementation is unlikely to enhance exercise-induced
changes in body composition or performance, and that only
isoflavones may increase lean body mass in postmenopausal
women (202), and another meta-analysis suggests that short-term
polyphenols intake, although attenuating the inflammatory
response after exercise, does not affect the anabolic response to
protein and exercise in healthy elderly men (203). In summary,
polyphenol supplementation is believed to reduce muscle pain
and accelerate the recovery of muscle function after exercise,
but the effect on body composition and physical performance
in patients with sarcopenia is inconclusive and remains to
be explored.

3. Conclusions

Clinicians or health care providers need to screen older adults
at risk for sarcopenia, especially those with comorbid malnutrition,
and use appropriate diagnostic tools to make the diagnosis. Related
professionals should then provide resistance training and diet
and protein optimization programs to patients with diagnosed
sarcopenia (15). This article summarizes the research progress
of nutritional supplements in the improvement of sarcopenia,
including the possible cellular andmolecular mechanisms involved,
so as to provide a reference for medical staff and researchers. The
currently acceptable recommended intakes for each nutrient are
shown in Table 2.

In the future, patients may benefit from complex hybrid
nutritional supplements, as well as the development of
nutrigenomics and metabolomics (204), so that nutritional
interventions provided are tailored to an individual’s nutritional
and metabolic status. In addition, when the molecular mechanisms
of muscle targets are well studied, they may play a key role in
developing targeted treatment and prevention strategies.
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