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Abstract Sarcopenia is now clinically defined as a loss of

muscle mass coupled with functional deterioration (either

walking speed or distance or grip strength). Based on the

FRAX studies suggesting that the questions without bone

mineral density can be used to screen for osteoporosis,

there is now a valid simple questionnaire to screen for

sarcopenia, i.e., the SARC-F. Numerous factors have been

implicated in the pathophysiology of sarcopenia. These

include genetic factors, mitochondrial defects, decreased

anabolic hormones (e.g., testosterone, vitamin D, growth

hormone and insulin growth hormone-1), inflammatory

cytokine excess, insulin resistance, decreased protein

intake and activity, poor blood flow to muscle and defi-

ciency of growth derived factor-11. Over the last decade,

there has been a remarkable increase in our understanding

of the molecular biology of muscle, resulting in a marked

increase in potential future targets for the treatment of

sarcopenia. At present, resistance exercise, protein sup-

plementation, and vitamin D have been established as the

basic treatment of sarcopenia. High-dose testosterone

increases muscle power and function, but has a number of

potentially limiting side effects. Other drugs in clinical

development include selective androgen receptor mole-

cules, ghrelin agonists, myostatin antibodies, activin IIR

antagonists, angiotensin converting enzyme inhibitors, beta

antagonists, and fast skeletal muscle troponin activators.

As sarcopenia is a major predictor of frailty, hip fracture,

disability, and mortality in older persons, the development

of drugs to treat it is eagerly awaited.

Keywords Sarcopenia � Muscle loss � Frailty � Muscle

function � Low muscle mass

Introduction

Sarcopenia was originally defined as the age-related loss of

muscle mass [1]. Subsequently, it became obvious to

clinicians that it was muscle quality, rather than muscle

mass that determined the function of muscle [2, 3]. This led

to the suggestion that it was muscle power (force x

velocity) which should be utilized to determine the role of

muscle in determining outcomes. It was suggested that this

should be termed dynapenia [4]. From this developed the

concept of a sarcopenia-disability cascade (Table 1). Each

component of this cascade can be separately measured and

theoretically would lead to worse outcomes.

However, in 2010, Cruz-Jentoft et al. [5] published the

‘‘European Consensus on Definition and Diagnosis of

Sarcopenia.’’ They redefined sarcopenia as being muscle

loss coupled with a decline in function (either walking

speed or grip strength). This definition was validated as

having a strong predictive ability of poor outcomes [6–8].

Subsequently, 4 other definitions of sarcopenia, all using

gait speed and grip strength, as well as some measurement

of low muscle mass have been published [9–12]. Each uses

slightly different cut off points and 2 recognized the

importance of having different cut offs for different ethnic

groups. Woo et al. [13] compared each of these definitions

and found that they had slightly different predictive abili-

ties. Of the definitions, the Foundation of NIH (FNIH)
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sarcopenia criteria using gait speed, but not grip strength,

had slightly better predictive value for poor outcomes.

Based on the parallels between osteoporosis and sar-

copenia and the finding that the 6 FRAX questions

without Bone Mineral Density are highly predictive of

fracture risk [14], we developed a simple sarcopenic

questionnaire to predict poor muscle function (Table 2)

[15]. This questionnaire has been shown to be a valid

predictor of poor outcomes similar to that of the FNIH

(walking speed) definition in both the United States and

Asia [13, 16–18].

Sarcopenia has multiple causes and, as older persons

develop a variety of diseases with increased production of

cytokines, it may overlap with cachexia [19]. In this

Table 1 The sarcopenia-disability cascade

Term Definition Measurement

Sarcopenia Loss of muscle mass not due to cachexia or

peripheral vascular disease

Dual energy X-ray absorptiometry

MRI/CT

Ultrasound

Bioelectrical impedance

Midarm muscle circumference

Calf circumference

Kratopenia Loss of force i.e., strength Isometric (dynometry)

Isotonic

Dynapenia Loss of power i.e., force 9 velocity Walking speed

Walking distance

Stair climbing

Jebsen hand function

Frailty Physical phenotype (fatigue, resistance,

aerobic, illness, loss of weight)

CHS (fried) criteria

FRAIL questionnaire

Study of osteoporotic fractures criteria Canadian

(Rockwood) criteria

Disability Loss of activities of daily living (ADLs) Katz ADLs

Barthel index

Functional index measure

The modern definition of sarcopenia is a combination for sarcopenia and dynapenia or kratopenia (grip strength)

Table 2 The SARC-F questionnaire for sarcopenia

Component Question Scoring

Strength How much difficulty do you have in lifting and carrying 10 pounds? None = 0

Some = 1

A lot or unable = 2

Assistance in walking How much difficulty do you have walking across a room? None = 0

Some = 1

A lot, use aids, or unable = 2

Rise from a chair How much difficulty do you have transferring from a chair or bed? None = 0

Some = 1

A lot or unable without help = 2

Climb stairs How much difficulty do you have climbing a flight of ten stairs? None = 0

Some = 1

A lot or unable = 2

Falls How many times have you fallen in the last year? None = 0

1–3 falls = 1

4 or more falls = 2

Scoring: 1–10 total points possible; 0–2 for each component; 0 = best, 10 = worst; 0–3 healthy; C 4 is symptomatic for sarcopenia
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review, we will first explore the physiological causes of

sarcopenia with a special emphasis on potential pharma-

ceutical targets. We will then review the available and

developing treatments for sarcopenia.

The Pathophysiology of Sarcopenia

When muscle contracts this activates mechanoreceptors,

i.e., titin and dystroglycan, and causes muscle injury. The

mechanoreceptors increase the activity of muscle growth

factors (IGF1-Ea and muscle growth factor) which increase

muscle protein synthesis and recruit satellite cells and

motor units. This leads to muscle regeneration and

increased muscle function (Fig. 1). With aging, there is

increased muscle injury with a decrease in muscle regen-

eration and function. This is due to a decrease in muscle

growth factors leading to a reduction in the protein syn-

thesis/degradation cycle and the activation of satellite cells

and motor units. Anatomically, with aging there is Type II

fiber atrophy resulting in decreased muscle mass, strength,

and power [20].

Old muscle shows fiber size heterogeneity and fiber

grouping with an increase in myosin heavy chain [21]. This

differs from cachexia where fiber size variability is not

seen. This is similar to the histological changes seen with

Amyotrophic Lateral Sclerosis. Sarcopenic patients have a

reduction in the motor unit number index (MUNIX) which

is intermediate between that seen in healthy older persons

and in patients with Amyotropic Lateral Sclerosis [22].

Further evidence of motor neuron degeneration is the

increase in C-terminal agrin fragments in about a third of

sarcopenic patients [23]. With aging, there is a 25 % loss of

motoneurons leading to sprouting of small motor neurons

that innervate Type II fibers leading to an eventual loss

of type II fibers [24]. Circulating levels of ciliary neu-

rotopic factor (CNTF), which stimulate motor unit for-

mation, decline with aging [25, 26]. Older persons who

have the null allele rs1800169 for CNTF have lower grip

strength [27]. Axokine, a modified version of CNTF, was

tried for weight loss due to its anorectic properties. The

trials were suspended when subjects developed antibodies

to CNTF.

Myokines

Besides CNTF, skeletal muscle produces a variety of

myokines that can modulate muscle growth and repair

(Fig. 2) [28–30]. Some of these, such as interleukin-6, may

be predominantly produced by adipose tissue infiltrating

muscle [31]. A number of these myokines have direct

effects on muscle such as IGF-1, IGF binding proteins,

myostatin, musclin, leukemia inhibitory factor and CXCL-

1. Others such as VEGF-B, IL-8 and Follistatin-like 1

increase angiogenesis in muscles. Proteomics of muscle

secretions should lead to the discovery of many more

myokines that modulate muscle growth [30].

IL-15 is an inflammatory cytokine produced by muscle

that increases contractile protein accumulation and causes

myotube hypertrophy [32]. In vivo IL-15 reduces fast

muscle fatigue and enhanced oxidative metabolism. Fati-

gue is an important component of the frailty phenotype

that is separate from sarcopenia [33, 34]. IL-15 agonists

or stimulants could be useful for the treatment of fatigue

in older persons. Fatigue is, in part, related to a loss of

muscle. A number of studies are examining the role of

IL-15 agonists in advanced cancer (www.clinicaltrials.

gov).

CONTRACTION 
Mechano 
R t

Muscle IGF1-Ea Type II Fiber
Protein
Synthesis/

Recep ors
Ti�n 

Dystroglycon

MUSCLE INJURY
G th

Fiber
Number

MGF

  
AtrophyDegrada�on

row
Factors

MUSCLE REGENERATION
Motor 
Units

Strength
Power

Satellite
Cells

(Mauro, 1961)FUNCTION

Fig. 1 Aging, exercise, and

muscle injury
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Genetics

Genes play a role in 65 % of the muscle mass and 50–80 %

of muscle strength in older persons [35]. Studies on genes

and muscle mass and strength have been rudimentary, with

a number of results being controversial [36]. Angiotensin

converting enzyme alleles have been shown to play a role

in efficiency of muscle contraction. The alpha-actin 3 is

responsible for anchoring the actin filaments to the 2-disk

in fast twitch fibers. An ACTN3 gene deficiency is asso-

ciated with reduced power and with endurance activity in

men [37, 38]. Bradykinin increases muscle blood flow and

the B2R gene associated with high function is more fre-

quent in endurance athletes. Other genes associated with

muscle strength include CNTF, IL-15, collagen type,

insulin growth factor II, myostatin, the vitamin D receptor,

and the androgen CAG receptor. In older persons,

expression of genes for insulin growth factor-1, myostatin,

matrix metalloproteinase-2, ciliary neurotrophic factor, and

myostatin correlated most optimally with training-induced

strength gains [39]. Variants in the activin receptor 1B play

an important role in human muscle strength [40]. Perilipin

2 is a protein associated with lipid droplets. Perilipin 2 is

higher in older persons and is related to a decline in muscle

strength and proteins associated with muscle atrophy, viz

MURF1, and atrogin [41]. This suggests that expression of

perilipin 2 may play a role in the development of obese

sarcopenia [42, 43].

Mitochondria

The peroxisome proliferator-activated receptor c coacti-

vator 1a (PGC-1a) regulates mitochondrial biogenesis and

function and regulates muscle fiber adaptation to exercise

[44]. There is a reduction of PGC-1a gene expression in

old animals and older persons [45]. This reduction results

in a low-grade inflammatory reaction with increased levels

of IL-6 and TNFa. PGC-1a activity decreases functional

loss of mitochondrial enzymes in old animals and protects

muscle from damage [46]. Biochemically, PGC-1a inhibits

FOXO and NFkB and thus decreases autophagy and the

ubiquitin–proteasome systems. PGC-1a promotes mito-

chondrial biogenesis and fusion, thus maintaining ATP

levels and reducing AMPK. Excess expression of PGC-1a
damages heart and muscle. It has been suggested that

increasing PGC-1a levels in sarcopenic tissue to physio-

logical levels may be a key therapeutic approach to treating

muscle wasting.

Mitochondrial dysfunction plays a major role in the

pathogenesis of aging [47, 48]. Mitochondria control the

production of cellular energy, free radical signaling, and

can activate apoptotic pathways. The importance of

bioenergetics in the development of sarcopenia is demon-

strated by the correlation of ATP synthesis/oxygen con-

sumption and walking speed in older persons [49]. Walking

speed is a key component of the modern definitions of

sarcopenia. In addition, with aging, there is often increased
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fusion leading to giant mitochondria which are difficult to

remove from cells and function poorly. Older mitochondria

tend to lose their outer membrane increasing their

propensity to apoptosis [50]. This is related to a decrease in

CisD2 gene expression in older humans. Transgenic mice

with CisD2 have enhanced longevity and improved muscle

quality [51]. Finally, the decline in PGC1a levels with

aging leads to translocation of BAX to the mitochondrial

membrane with activation of the mitochondrial membrane

pore and loss of cytochrome C. This results in mitochon-

drial apoptosis.

For all of the above reasons, targeting muscle mito-

chondria appears to be a reasonable approach to the ther-

apeutics of sarcopenia. However, this is not that simple.

Antioxidants tend to over reduce free radicals leading to

loss of their necessary functions, e.g., nitric oxide effects

on blood flow. Coenzyme Q10, a lipid soluble benzo-

quinone with a side chain of 10 isoprenoid units, freely

diffuses across the inner mitochondrial membrane and

couples electron flow to proton movement. It is also a

membrane stabilizer but is a potent free radical scavenger.

Mitoquinones are antioxidants targeted to accumulate in

mitochondria. To date they have not been shown to be

clinically useful. Another approach would be to develop

substances that could replace the loss of CisD2. Substances

that theoretically enhance nuclear/mitochondrial protein

interactions include sirtuins (e.g., reservatol) and

polyphenols. These have not yet been shown to have major

effects on muscle function. Metformin enhances nitric

oxide function and may prevent BAX translocation to the

mitochondrial membrane. All of these approaches need to

be further explored as possible therapeutic approaches to

sarcopenia.

Vascular

Another component of the development of sarcopenia with

aging is the reduction in blood flow to muscles [52, 53].

With aging, there is a decrease in endothelium-dependent

vasodilation, due in part to decreased nitric oxide

bioavailability [54]. These changes together with reduced

lineal density of the perfused capillaries [55] lead to

decreased microvascular oxygenation of muscles [55].

Protein Synthesis

At a basic level, protein synthesis and/or degradation are

controlled by activation of the insulin or IGF-1 receptor

(Fig. 3). This activates the phosphoinositide 3-kinase

(PI3K)-AKT—mammalian target of rapamycin (mTOR)

signaling pathway [56]. Increased mTOR, which is also

stimulated by essential aminoacids, leads to increased

protein synthesis. Both AKT and PGC1a block FOXO

activity, thus decreasing the transcription of atrogenes.

These include the muscle-specific ligases viz. muscle-

specific RING-finger 1 (MURF1 or TRIM63) and atrogin

1. Atrogin 1 degrades proteins that enhance protein syn-

thesis. MURF-1 and ubiquitin tripartite motif containing
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protein 32 (TRIM32) directly control myofibril breakdown.

MURF1 attacks the myosin binding protein and the myosin

light chain eventually leading to destruction of the thick

myosin filament. TRIM32 destroys desmin and then the

Z-band and eventually the thin actin filament. At the same

time TRIM32 directly inhibits PI3 K-AKT activity result-

ing in increased proteolysis. Myofibrils constitute the vast

majority of muscle protein and their destruction leads to

loss of muscle function [57, 58]. There is an increase in

protein destruction and ubiquination in sarcopenia. Obvi-

ously, inhibitors of TRIM32 and/or MURF1 represent

attractive therapeutic targets for treating sarcopenia.

MicroRNAs

MicroRNAs (miRNA) are small molecules which regulate

posttranscriptional gene function by silencing RNA. They

are cleaved in the nucleus by Drosha and then exported into

the cytoplasm, where they are processed by DICER and

combined with AGO to form RNA-induced silencing

complexes. These then repress translation of mRNAs.

Satellite cells decline with aging [59]. miRNAs play a

central role in satellite cell quiescence [60]. The miRNAs

(miR-1, miR-208, and MiR486) regulate satellite cell

renewal by modulating Pax7. Decreased skeletal muscle

miRNA expression in older persons is associated with a

decrease in the function of the IGF-1/PIsK/AKT pathway

[61]. Exercise modulates the response of a number of

muscle-specific miRNAs. There is evidence that miRNAs

are sensitive to a variety of drugs such as mu opioids [62]

and drugs for Parkinson’s disease [63]. There appears to be

tremendous potential to treat sarcopenia by modulating

miRNAs. As more is known about the role of miRNAs in

modulating muscle growth, it will also become possible to

modulate specific RNAs by mimicking the positive pat-

terns with phosphorothiolated antisenses.

Electrical stimulation of both thighs for 9 weeks

improved timed up and go test, walking speed and 5 time

chair rise [64]. This training led to an increase in diameter

and percent of fast fibers. There was a stimulation of IGF-1

isoforms with a reduction of MuRF-1 and atrogin-1 leading

to a reduction in proteolysis. Electrical stimulation also

produces an increase of satellite cells. Electrical stimula-

tion increased miR-29 which would decrease fibrotic

infiltration of muscle. Overall, this study strongly supports

the concept of electrical muscle stimulation for treatment

of sarcopenia.

Parabiosis

Studies with parabiotic mice have shown that the combi-

nation of a young and an old mouse leads to rejuvenation in

the muscle of the older mouse [65]. This was due to an

increase in Notch signaling leading to an increase in

satellite cells. The humoral agent responsible for this

appears, in a large part, to be growth differentiation factor

11 (GDF11) [66]. Sinha et al. [67] have demonstrated that

testosterone plays a permissive role in muscle mass and

fiber cross-sectional area in parabiotic mice. These data

suggest a role for GDF11 in treatment of sarcopenia.

Hibernating animals maintain their muscle structure

during winter, raising the question of whether a circulating

factor, in addition to shivering thermogenesis, is respon-

sible for the protection of muscle during hibernation. The

extensor digitorum longus muscle of the rat, when incu-

bated with serum obtained from hibernating bears had a

40 % decrease in proteolysis, associated with a decline in

cathepsin B and ubiquitin [68]. During hibernation, there is

an increase in PGC-1a, which is associated with a decrease

in FOXO and MURF-1 [69]. Serum- and glucocorticoid-

inducible kinase 1 (SGK1) has been shown to downregu-

late proteolysis, autophagy and increase protein synthesis

in hibernating animals [70]. This bypasses the classical

AKT-FOXO pathway. SGK-1 may represent an important

therapeutic target to prevent atrophy-induced muscle loss.

Table 3 provides a list of potential targets for future

drug development. Figure 4 gives an overview of the major

factors so far demonstrated to be a component of the

pathophysiology of sarcopenia. Many of these already have

drugs available or under development. These and their

physiological rationale will be discussed in the next

section.

Management of Sarcopenia

The primary treatment of sarcopenia is resistance exercise

[71–73]. As was shown by the LIFE study, aerobic exercise

can also decrease functional decline in lower limb muscles

[74]. Exercise has also been shown to be an important

therapeutic approach to reversing frailty [75]. There is

evidence to support that excess protein [1–1.2 g (kj day)]

may also enhance muscle mass and, to a lesser extent,

function [76–80]. This is particularly true for leucine

enriched essential amino acids (whey protein) [81].

Essential amino acid supplementation prevents muscle

mass loss due to bed rest [82]. A recent multicenter study

has shown that whey protein together with vitamin D

increased both muscle mass and stair climb [83]. There is

some evidence for synergistic effects of exercise and pro-

tein to enhance muscle function [84–86]. Vitamin D sup-

plementation increases muscle strength without increasing

muscle mass or power [87]. Vitamin D is more effective in

older persons and those with low vitamin D levels. It also

decreases falls in persons who are vitamin D deficient [88].
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At present, no drugs have been shown to be clinically more

therapeutically effective.

Testosterone

Testosterone levels decline at the rate of 1 % per year from

30 years of age [89, 90]. This decline in testosterone is

associated with a decline in muscle mass and strength [91].

Since the original studies showing that testosterone

increased muscle strength in older persons [92–94],

numerous studies have shown that in low doses testos-

terone increased muscle mass and decreases fat mass [95]

and in higher doses increased both muscle and power [96].

In frail older persons [97–99] and in persons with heart

failure [100–103] testosterone increased both strength and

walking distance. Testosterone improves muscle strength

in women as well as in men [104]. In frail older persons,

Table 3 Potential future targets for drug development to treat sarcopenia

Target Function

1. TRIM 32 inhibitors Inhibits destruction of desmin, the 2-band, thin actin filaments, and proteolysis

2. Ciliary Neurotrophic Factor agonist Enhance motor neuron endplate function

3. Myokines activators and inhibitors Modulate muscle function

4. PGC1a agonist Mitochondrial biogenesis

5. CisD protein replacement Improves outer permeability membrane of mitochondria

6. Sirtuins/reservatol/polyphenols Enhance nuclear/mitochondrial protein interaction

7. Biguanides Increase nitric oxide function and inhibit BAX translocation to mitochondrial

membrane

8. Nitric oxide (Isorbide dinitrite) Enhance muscle blood flow

9. MicroRNAs (miR-1, miR-29, miR208, and miR486)

modulators

Modulate satellite cell quiescence

10. RNA antisense Modulate RNA function

11. Growth differentiation factor (GDF11) Satellite cell rejuvenation

12. Serum- and glucocorticoid-inducible kinase 1 (SGK1) Reduces proteolysis and autophagy and enhances protein synthesis
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testosterone in combination with a protein supplement

decreased hospitalization [105].

In lower doses, testosterone increases protein synthesis

resulting in an increase in muscle mass [106, 107]. In high

doses, testosterone activates satellite cell recruitment and

reduces adipose stem cells [108]. Testosterone effects on

muscle cells bypass the WNT system and activate b-cate-
nin [109]. This leads to increased myogenesis and cell

cycling and decreased adipogenesis.

While testosterone as a therapeutic agent has been uti-

lized since the 1940s, there is a fear that it will produce

excessive side effects [110]. A meta-analysis of the con-

trolled studies of testosterone in older males found no

increase in mortality [111]. Whether or not it increases

cardiovascular events, and particularly in the first 3 months

after administration, remains controversial [112, 113].

Persons with diabetes mellitus have accelerated sarcopenia

[114–116], and a recent study in diabetics found a decrease

in mortality in diabetics receiving testosterone [117].

Nevertheless, this fear of negative effects from testostos-

terone has driven the exploration for selective androgen

receptor modulators (SARMs) which may be, theoretically,

safer. At present, of the drugs developed and being

developed for sarcopenia, testosterone remains the most

efficacious and safest. In view of the fact that testosterone

also increases bone mineral density and bone strength [118,

119] and osteoporosis often co-exists with sarcopenia

(osteosarcopenia), it would seem that more clinical atten-

tion should be paid to the potential role of testosterone for

treating sarcopenia. Two major trials are presently under-

way and these may help determine the place of testosterone

in the management of sarcopenia, osteoporosis, and frailty

(The Testosterone Trial in Older Men—www.clinicaltrials.

gov and the T4DM trial—www.t4dm.org.au).

Anabolic Steroids/Selective Androgen Receptor
Modulators (SARMs)

Nandrolone is an injectable anabolic steroid. It increased

fiber area and muscle mass, but there is no evidence that it

increased strength [120–122]. In three studies of persons

with hip fracture, it had a nonstatistical improvement in

functional status [123].

MK0773 (TFM-4AS-1) is a 4-aza steroidal drug that has

androgen gene selectivity. In females, it increased IGF-1 as

well as stair climbing power and gait speed [124]. This

study was terminated because of an increased signal for

cardiac failure. In women with sarcopenia, it increased

muscle mass, bilateral leg press, and stair climbing power

but not gait speed (www.clinicaltrials.gov). The study in

males was reported at the 90th Endocrine Society in 2008.

It showed anabolic effects of MK0773.

SARMs are androgen receptor ligands that band to the

androgen receptor with differing sensitivity compared to

testosterone [125]. Steroidal SARMs were first developed

in the 1940s. More recently, a number of nonsteroidal

SARMs have been developed [126].

LGD-4033 is a nonsteroidal, orally active SARM. The

phase I trial showed an increase in muscle mass, but no

effect on fat mass in a 21-day trial [127]. BMS-564929 is

also in phase I trials.

In a 12-week study, enobosarm increased total lean mass

and stair climb [128]. In female patients with cancer,

enobosarm increased lean mass compared to baseline, but

not significantly compared to placebo [129]. In 2 phase 3

trials, it maintained body mass and improved stair climb in

one of the 2 trials in patients with cancer [130].

Overall, these studies of SARMs have shown no

advantage over testosterone.

Growth Hormone/Insulin Growth Factor-1

Rudman et al. [131] originally showed that growth hor-

mone increased lean body mass in older men. The excite-

ment created by their original data was dampened by

finding that a growth hormone treatment for a year led to a

variety of side effects such as carpal tunnel syndrome and

gynecomastia [132]. Subsequently, growth hormone has

been shown to increase muscle mass but not muscle

strength in older persons [133]. A combination of growth

hormone and testosterone increased muscle mass at

8 weeks and 1 repetition maximum strength only by week

17 [134]. Growth hormone, which produces its effects

through the release of liver-derived IGF-1, also increased

nitrogen retention [135]. Adverse effects include joint and

muscle pain, edema, carpal tunnel syndrome, and hyper-

glycemia [136].

There are marked reductions of circulating IGF-1 with

aging [137]. Both low and high levels of IGF-1 are asso-

ciated with increased risk of cardiovascular disease. Sim-

ilarly, there is limited evidence that circulating IGF-1 is

associated with muscle power. A single small study of IGF-

1 in older persons found an increase in side effects viz.

orthostatic hypotension, gynecomastia, myositis, and

edema [138].

Ghrelin

Ghrelin is produced from the fundus of the stomach. It

increases food intake and growth hormone. These effects of

ghrelin are due to the hypothalamic release of nitric oxide

[139]. Ghrelin increased food intake and produced muscle

mass gain in persons with cancer [140, 141]. The ghrelin

agonist, anamorelin, increased food intake, and muscle

mass, but not strength in persons with cancer cachexia
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[142, 143]. Macimorelin is another ghrelin agonist under

development.

Capromorelin, a ghrelin receptor agonist, was tested in

older sarcopenic individuals [144]. It increased lean mass,

tandem walk, and stair climb at the end of treatment for a

year. MK-0677, which also activates the ghrelin receptor to

increase growth hormone, was studied for 24 weeks in

persons with hip fracture [145]. Over this period, it

increased ability to stair climb and also decreased falls. The

treatment was associated with an increase in heart failure.

Overall, while ghrelin agonists will increase food intake

and muscle mass, it is unlikely that they will produce a

significant effect on function in persons with sarcopenia.

Myostatin and Activin II Receptor Inhibitors

Myostatin or growth differentiation factor-8 is produced in

skeletal muscle and prevents muscle growth and satellite

cell production [146]. Myostatin activates the Activin IIR

receptor to increase SMAD (Fig. 3). Lack of myostatin in

animals leads to ‘‘double muscled’’ cows (Belgian Blue

and Piedmontese). Heterozygote deletion of myostatin in

whippets leads to an increase in running ability, while

homozygotes are more muscular but not as good runners. A

homozygote muscle deletion of myostatin in a young boy

resulted in an increase in muscle mass [147].

In humans, creatine, together with resistance exercise,

results in an amplification of the normal decrease in myo-

statin with resistance training alone [148]. Creatine pro-

duces a small increase in strength in persons with muscular

dystrophy [149]. Myostatin monoclonal antibodies increase

muscle mass in mice [150]. In humans with muscular dys-

trophy, a myostatin antibody (MYO-029) enhanced muscle

mass [151]. Muscle fiber diameter increased in the 10 mg/

kg dose. Side effects included urticaria and aseptic menin-

gitis at high doses. Another myostatin antibody (AMG 745)

increased lean body mass and decreased fat after 28 days in

persons on androgen deprivation therapy for prostate cancer

[152]. Diarrhea, confusion, and fatigue were more common

in the persons receiving active drug. LY2495655 increased

muscle volume and handgrip strength in persons with

advanced cancer (www.clinicaltrials.gov). REGN1033

(GDF8 antibody) has reported promising effects on muscle

at the sarcopenia meeting in Barcelona.

An activin II receptor ligand trap (ACE-011) increased

bone mass and strength in monkeys [153]. ACE-031 in 48

postmenopausal women increased lean mass and thigh

muscle volume after a single dose [154]. Another ligand

trap ACE-083 is also under development. Side effects

including telangiectasia, epistaxis, and changes in gona-

dotrophin levels resulted in the company stopping the

development of these compounds.

Table 4 Approaches currently available or being developed to treat sarcopenia

Modality Effect Side effects

Resistance exercise Increase muscle mass, strength, and

power

Potential for falls; muscle injuries

Protein (essential amino acids) Increase muscle mass; synergy with

exercise to increase muscle strength and

power

Minimal increased creatinine levels

Testosterone Increase muscle mass, strength, power,

and function

Fluid retention; increased hematocrit;

short term worsening of sleep apnea;

effects on prostate cancer; possible

increase in cardiovascular events

Selective androgen receptor modulators

(SARMS)

Increase muscle mass; small increase in

power

Increased cardiac failure

Growth hormone Increase nitrogen retention; increase

muscle mass

Arthralgia; muscle pain; edema; carpal

tunnel syndrome; hyperglycemia

Ghrelin agonists Increased muscle mass and appetite Fatigue; atrial fibrillation; dyspnea

Myostatin antibodies Increased lean body mass and handgrip Urticaria; aseptic meningitis; diarrhea;

confusion; fatigue

Activin 11R antagonists Increase thigh muscle volume, muscle

mass, and 6-min walk distance

Acne; involuntary muscle contractions

Angiotensin converting enzyme inhibitor

(perindopril)

Increased distance walked; decreased hip

fracture

Hypotension; hyperkalemia; muscle

cramps; numbness

Espindolol (B1/B2 adrenergic receptor

antagonist)

Maintains muscle mass; increased hand

grip strength

?

Fast skeletal muscle troponin activators

(Tirasemtiv)

Improves muscle function ?
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Inclusion body myositis is a rare autoimmune disorder.

It occurs in persons 50 years and older. Its hallmark is

amyloid inclusion bodies. Bimagramab is an activin

receptor inhibitor. In persons with inclusion body myositis,

bimagramab increased thigh muscle volume, lean muscle

mass, and 6-min walking distance [155].

Espindolol (Mixed Agonist/Antagonist B1,B2, B3

Activity)

Espindolol is the S-enantiomer of pindolol. It increases

muscle mass and decreases fat mass in older animals [156].

A phase II trial showed an increase in muscle mass and a

decrease in fat mass [157]: It also increased handrip

strength.

Angiotensin Converting Enzyme Inhibitor

(Perindopril)

Perindopril has been shown to increase distance walked in

older persons with left ventricular systolic dysfunction

[158]. It also improved 6-min walking distance in older

persons with functional impairment [159]. There was,

however, no enhancement in persons undergoing exercise

training [160]. In addition, in the HYVET study perindopril

decreased hip fracture [161].

Fast Skeletal Troponin Activitors (Terasemtiv)

There are drugs which amplify motor neuron input,

resulting in improved muscle power and muscle fatigabil-

ity. Terasemtiv slowed the rate of decline in muscle

strength [162]. In persons with peripheral vascular disease,

terasemtiv increased work done in a bilateral heel raising

test (www.cytokinetics.com/ck2017357).

Conclusion

Sarcopenia (loss of muscle mass and muscle function) is a

strong predictor of frailty, disability, and mortality in older

persons. At present resistance exercise is the primary

treatment for sarcopenia. Supplementation with essential

amino acids, creatine, and vitamin D may enhance the

effect of resistance exercise. The effects of testosterone on

muscle include increased muscle power and function. At

present, the side effects of testosterone, though minimal in

placebo controlled trials, remain a possible limitation to its

use. No other drugs under development have been shown to

be more potent than testosterone. All the drugs under

development have their own set of side-effects and will

clearly be more expensive than resistance exercise or

injectable testosterone (Table 4). There are numerous

potential targets for enhancing muscle function, and the

development of new drugs for sarcopenia represents a

potentially exciting clinical area.
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