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Abstract: Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the
stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation.
Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vi-
tamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium–phosphate homeostasis, and this
process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the
production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served
as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct
cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium
influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase
A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic
responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate
several intracellular processes—including cell cycle, proliferation, or immune responses—through
wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its corecep-
tor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its
involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly
influences mitochondrial function, including fusion–fission, energy production, mitochondrial mem-
brane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic
responses to vitamin D are still not fully understood, in this review, their impact on physiology,
pathology, and potential clinical applications will be discussed.

Keywords: vitamin D; VDR; nongenomic response; PDIA3; ultraviolet radiation; megalin; mitochon-
dria; vitamin D analogs

1. Vitamin D—Overview

Vitamin D is present in almost forms of life, from phytoplankton to humans, and is
considered one of the oldest hormones on Earth [1–3]. In humans, the classic endocrine
function of this powerful secosteroid is regulation of calcium–phosphorus homeostasis in
order to maintain proper function of the body [4]. Initially, vitamin D has been described
as a vitamin because it can be acquired from the diet, mainly from fatty fish, fish oil, milk
products, and some mushrooms. However, for humans, the major and a natural source of vi-
tamin D is its photochemical production by 7-dehydrocholesterol (7-DHC) [5]. This process
is stimulated by ultraviolet type B (UVB) radiation (280–320 nm) and takes place in the basal
layer of epidermis of the skin [6,7]. To be exact, photodegradation of the B-ring of 7-DHC
resulted in production of three isomers: previtamin D, tachysterol, and lumisterol. Those
byproducts are subjected to time-dependent thermal conversion to vitamin D, which—after
release from the cells—enters the circulatory system and is transported to all organs by
vitamin-D-binding protein (DBP) [8–10]. Regardless of the source, vitamin D requires
two subsequent hydroxylations to achievement its full hormonal activity [3,5,11]. First,
25-hydroxylase (CYP2R1) facilitates the production of 25-hydroxyvitamin D3 (25(OH)D3)
in the liver‘s hepatocytes. This is the major metabolite of vitamin D, and its serum level is
widely used as an indicator of vitamin D status [3,12–15]. The second hydroxylation takes
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place in proximal tubules of the kidney and requires activity of 1α-hydroxylase (CYP27B1).
The final product is a fully active hormone—1,25(OH)2D3, calcitriol [16,17]. Serum levels of
vitamin D are tightly regulated on two levels. Firstly, an excess of sun (ultraviolet radiation
type B) leads to photodegradation of vitamin D and the formation of suprasterols [18].
Secondly, elevated levels of 1,25(OH)2D3 stimulate the expression of CYP24A1, which is
24-hydroxylase and is responsible for the catabolism (deactivation) of both 25(OH)D3 and
1,25(OH)2D3 [6]. Several other metabolites of vitamin D have been described in recent years,
including 3-epi analogs [19–21], lactones [22], and CYP1A1 (CYP450scc) metabolites [23–26].
However, their biological function still is far from being understood.

1,25(OH)2D3 regulates a variety of cellular processes thought activation of a nuclear
receptor—VDR. It binds to VDR, which forms a complex with its coreceptor RXR and is
subsequently translocated into the nucleus. Upon activation, the VDR-RXR complex regu-
lates expression from hundreds to more than 3000 genes in the human genome depending
on cell type and physiological conditions [27–29]. Interestingly, recent studies have shown
that not only 1,25(OH)2D3 can affect the expression of genes. 25(OH)D3 also binds to VDR
but with an affinity approximately 1000 times lower compared to 1,25(OH)2D3. Transcrip-
tomic analyses of human peripheral blood mononuclear cells (PBMCs) revealed similar
patterns of genes affected by 25(OH)D3 treatment at 1000 or 10,000 nM concentrations
compared to 10 nM 1,25(OH)2D3 [30,31]. Similar overlapping patterns of expression were
also observed in the prostate cancer cell line LNCaP [32]. Intestinally, the metallothionein
2A gene was identified as a unique target for 1,25(OH)2D3 but not for 25(OH)D3 [33]. Other
nonclassic metabolites of vitamin D, such as 20(OH)D3 and 20,23(OH)2D3, not only interact
with VDR but also target other transcription factors, including RORα and RORγ [34,35] or
AhR [28]. These experiments led to the detection of unique genes regulated by alternative
nuclear receptors. Furthermore, it seems that the genes coding transcription factors (TFs)
are activated by 1,25(OH)2D3, which in turn regulates the expression of additional sets of
genes [36], which could be described as secondary genomic response. Recently, regulatory
effects of 1,25(OH)2D3 on the expression of microRNAs and long noncoding RNAs have
been uncovered as a potential anticancer mechanism [37,38].

The main target of vitamin D is the regulation of the calcium–phosphate homeostasis,
which contributes to maintaining proper bone health [1,11,13,39–41]. Furthermore, the
presence of VDR is already well documented in the cells of various organs, and it was
established that proper function of musculoskeletal, immune, nervous, and cardiovas-
cular systems as well as regeneration of epithelial barriers strongly depends on vitamin
D. Vitamin D deficiency (25(OH)D3 level below 20 ng/mL) was not only described as a
risk factor for rickets or osteoporosis [39,42] but also impairs the function of the immune
system [43–47] and its response to pathogens, including influenza viruses [48] and coro-
naviruses (SARS-CoV-2) [49]. Vitamin D supplementation resulting in adequate level of
vitamin D (preferably 30 ng/mL of 25(OH)D3 in the serum) improves muscle performance
and reduces falls in vitamin-D-deficient older adults [50]. It also has a neuroprotective
role [51,52] and prevents and reduces outcomes of psoriasis [53]. Furthermore, it was sug-
gested that even higher levels of vitamin D (40–60 ng/mL of 25(OH)D3 in the serum) are
beneficial, reducing the occurrence and severity of multiple types of cancer [23,54–60] and
displaying neuroprotective [61] and cardioprotective properties [62,63]. Consequently, high
doses of vitamin D were found to be beneficial in the prevention or treatment of several
diseases, including cancer [23,54,56,58,59,64], neurodegenerative disorders, autoimmune
diseases [43,45,65,66], psoriasis [67,68], and preeclampsia [69]. This must be of special in-
terest because vitamin D deficiency is still a global problem [21,39,55,70–72]. Furthermore,
seasonal changes in vitamin D levels that were observed pointed to the necessity of its
proper supplementation, especially in the winter season [12,13,72].

In spite of the well-established role of VDR in the biological activity of vitamin D,
not all effects of this powerful hormone could be liked to VDR-driven regulation of the
expression of the genes. Firstly, some proven physiological effects can be observed within
seconds or minutes after stimulation with vitamin D. These do not include activation of gene
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expression and subsequent protein synthesis, which take at least a few. Thus, the so-called
rapid nongenomic responses to vitamin D have been described. The presence of membrane
receptor for vitamin D has been suggested as an analogy to other steroid hormones [73].
Interestingly, in spite of the fact that VDR is a nuclear receptor, its involvement was not
fully excluded. However, rapid responses do not rely on its transcriptional activity [74].
In this review, I will discuss different aspects of alternatives to the genomic activities of
vitamin D. Figure 1 visualizes our current understanding of the variety of cellular processes
activated by vitamin D and its metabolites.
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Figure 1. Vitamin-D-activated pathways. All secosteroids, including vitamin D3, 25(OH)D3,
1,25(OH)2D3, and other derivatives, enter the cell directly though the plasma membrane according
to the free hormone hypothesis. Alternatively, 1,25(OH)2D3 bound to DBP may be imported by the
megalin/cubulin complex (LRP2-CUBN complex) via receptor-mediated endocytosis. Inside the cell,
1,25(OH)2D3 binds the VDR-RXR complex, which is translocated into the nucleus and modulates
the expression of targeted genes. Vitamin D metabolism takes place in the mitochondria, including
activation of 25(OH)D3 by CYP27B1, resulting in formation of 1,25(OH)2D3 and inactivation of both
metabolites by CYP24A1. In mitochondria, vitamin D may act as ROS scavengers, thus protecting
the mitochondria from damage. Vitamin D metabolites may also directly influence ion transport,
oxidative phosphorylation, and ROS response or may do so indirectly through the genomic pathway
(blue arrow). PDIA3 mediates 1,25(OH)2D3-dependent membrane-signaling cascades. PDIA3 was
detected on both sides of the cell membrane, on the endoplasmic reticulum, and in the cytoplasm,
and its translocation to the nucleus was also postulated. PDIA3 mediates 1,25(OH)2D3-dependent
activation of PLAA, PLA2, and PLC and the opening of Ca+2 and Pi (NaPi II a,c) channels. These
result in the rapid accumulation of secondary messengers, including DAG, IP3, cAMP, and Ca+2,
followed by PKA, PKC, or CAMK2G activation and the alteration of several downstream targets,
including MAPK pathways. VDR was found also to be colocalized with CAV1 and SRC in caveolae.
Its membrane activity was linked with the downregulation of WNT, SSH, and NOTCH signaling
pathways. Alone or together with VDR after stimulation with 1,25(OH)2D3, PDIA3 modulates the
transcription factors NF-kappaB, STAT3, and P53. At the endoplasmic reticulum, PDIA3—together
with calreticulin (CRT) and calnexin (CANX)—facilitates protein folding. 1,25(OH)2D3, through VDR
transcriptional activity, induces several transcription factors (TFs) which are involved in secondary
genomic responses to this multipotent hormone.
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2. Direct Effects of Vitamin D on Calcium Transport

The idea of alternative pathways activated by vitamin D arose from an observation
of rapid (1–10 min) influx of calcium induced by calcitriol in osteogenic sarcoma cell line
ROS 17/2.8 [75] or myocytes isolated from chicken embryonic heart [76]. Consequently,
transcaltachia was described as a rapid—measured in seconds to minutes—resorption of
calcium by enterocytes in response to calcitriol [77]. Interestingly, the rapid influx of calcium
requires as low as picomolar concentrations of calcitriol (0.13 nM [78] or 0.3 nM [79]). Later,
activation of rapid nongenomic responses to calcitriol was confirmed in vivo in chicken [80],
in cultured mice chondrocytes with VDR knockout, and in osteoblastic cell line ROS 24/1
deprived of VDR expression [81]. The time frame (seconds to minutes) of observed calcium
transport excludes involvement of the genomic pathway of response to vitamin D. Thus,
the idea of membrane response was suggested.

3. Transmembrane Transport of Vitamin D

It is still presumed, according to free hormone hypothesis, that vitamin D can freely
diffuse through the membranes and does not require transporter or channel to enter
the cells [82], as can other lipophilic steroids. However, only ~0.04% of 1,25(OH)2D3
is considered to be a free hormone in circulation. Furthermore, the major circulating
metabolite of vitamin D–25(OH)D3 is mainly carried by vitamin-D-binding protein (DBP;
~85%) and albumin (~15%). Thus, only a fraction of 25(OH)D3 is free (~0.03%) and can
be directly absorbed by the target cells. In an addition, the affinity of 1,25(OH)2D3 to
DBP is 10 to 100 times lower in comparison to 25(OH)D3 but is sufficient to be its main
transporter [8]. This also raises an important question: How do vitamin D metabolites
bound with high affinity to DBP become freed and enter into cells? It is well established that
other hormones, including steroids and thyroid hormones are bound with corresponding
globulins in circulation and require carrier proteins for efficient cellular uptake of their
complexes [83]. Surprisingly, early studies revealed that deletion of DBP did not result in
vitamin D deficiency under normal vitamin D supplementation, which strongly supported
the free hormone hypothesis [84]. On the other hand, a deletion of megalin (LRP2) 600-kDa
transmembrane glycoprotein, which functions as an endocytic receptor, results in vitamin
D deficiency. Later studies reviled that megalin and two additional proteins—cubilin
(CUBN) and disabled-2 (DAB2)—are required for effective endocytosis of DBP/vitamin D
complexes. It was shown that deletion or deactivation of any of those proteins results in
vitamin D deficiency, hypocalcaemia, and subsequent deterioration of bone structure and
function [85–87].

Although expression of megalin, as well as megalin-mediated endocytosis of DBP
protein, was shown in several tissues, including muscle [88], mammary gland [89], placenta,
prostate, colon epithelium [90], and skin tissues, the best-studied model is epithelium of
the proximal convoluted tubules of the kidney [91]. It was shown that the megalin complex
is responsible for rapid and efficient resorption of small proteins, including DBP binding
vitamin D, and this mechanism is necessary to maintain an optimal level of vitamin D in
circulation. Interestingly, epithelial cells of proximal convoluted tubules express CYP27B1
and CYP24A1. Thus, the kidney is the primary location of both activation and deactivation
of vitamin D [85,86,92]. Recent studies also postulated the role of megalin in membrane
to mitochondria trafficking of various proteins (angiotensin II, stanniocalcin-1, and TGF-
β) [93,94], which raises the question of whether the same mechanism could be utilized by
vitamin D in complex with DBP. In summary, the role of the megalin-mediated transport of
DBP-bound vitamin D metabolite in a rapid membrane response to this secosteroid and its
mitochondrial targeting is currently under discussion and intensive investigation.

4. Membrane-Bound Receptor(s) and Targets for Vitamin D

As opposed to its genomic counterparts, nongenomic vitamin D responses appear
rapidly (within a range of seconds or minutes) and are not susceptible to actinomycin D or
cycloheximide. Therefore, they do not require expression of genes or protein synthesis [95].
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Thus, a direct interaction of this secosteroid with membrane-bound or intracellular macro-
molecules was suggested as an acceptable explanation [96,97]. In fact, several steroids
and other small regulatory molecules bind to membrane receptors in addition to their
nuclear receptors, activating rapid responses [73,97]. Thus, in an analogy, an involvement
of a G-coupled membrane receptor (GPCR) in vitamin D signaling was suggested, and its
presence initially confirmed in membranous cell extracts [76,98]. Furthermore, the existence
of membrane-associated activities of vitamin D was supported by observation of a rapid
and efficient mobilization of the secondary messengers, including cAMP and calcium,
triggered by 1,25(OH)2D3 [75,79]. Other studies documented fast (15–300 s) activation of
phospholipase C (PLC) and calcium influx in response to the stimulus in the ROS 24/1
osteoblastic cell line [98]. It must be underscored that VDR involvement should be excluded
because ROS 24/1 cells lack VDR expression. Similar studies on cultured chondrocytes
derived from VDR knockout mice confirmed this observation [81]. Unfortunately, no
receptor of the GPCR or receptor tyrosine kinase families dedicated to vitamin D or its
metabolites has been identified so far. Nevertheless, the early studies of Nemere et al. on
transcaltachia [99] resulted not only in the discovery of rapid response to vitamin D and
its metabolites but also in the detection of a membrane-associated protein that binds to
radiolabeled 1,25(OH)2D3 (KD-value 0.72 nM) [100]. The protein was initially described
as 1,25D3-MARRS (membrane-associated rapid response to steroid), but it is also known
as PDIA3 (protein disulfide isomerase family A member 3), GRP58, and ERp57 [101–108].
PDIA3 interacts with calreticulin (CALR) and calnexin (CANX) and plays a crucial role
in the folding and export of proteins from the endoplasmic reticulum [80,109]. PDIA3
activity is essential for the proper function of the immune [74,110] and musculoskeletal
systems [102,111] as well as for mammary gland growth and development [112]. Sev-
eral groups have reported colocalization of PDIA3 with the cell membrane, cytoplasm,
mitochondria, and even the nucleus [113,114]. Most importantly, PDIA3 was found to
be involved in a rapid intestinal uptake of calcium and phosphate. Thus, its involve-
ment in the classic function of 1,25(OH)2D3 was postulated [79,80,100,105,107]. It was also
confirmed that 1,25(OH)2D3 binds to the a’ domain of PDIA3, with an estimated KD of
1 nM [115]. Site-directed mutagenesis studies revealed that the catalytic side of PDIA3
(C406) and its calreticulin (CALR) interaction site (K214 and R282) are required for the
rapid response to 1,25(OH)2D3 [116]. Unfortunately, the nature of interaction of PDIA3
with vitamin D metabolites is not fully understood. The binding side for 1,25(OH)2D3
was not fully characterized because only a partial crystal structure of PDIA3 is avail-
able [117]. However, several studies have strongly supported involvement of PDIA3 in
vitamin D signaling. For example, although a deletion of PDIA3 (PDIA3+/-) is lethal in
mice [108,110], its partial silencing (PDIA3+/-) resulted in aberration in skeletal develop-
ment [118], thus at least indirectly linking PDIA3 activity to calcium homoeostasis and
vitamin D. Furthermore, targeted disruption of the PDIA3 gene results in an inhibition
of rapid calcium transport and attenuates PKA or PKC signaling, thus impairing rapid
nongenomic responses to 1,25(OH)2D3 [107,108]. In an addition, PDIA3 was also shown to
interact with PLA2-activating protein (PLAA), which led to activation of phospholipaseA2
(PLA2), while targeted disruption of the PDIA3 gene attenuates cellular Ca+2 influx through
L-type Ca+2 channels [119]. Other studies pointed out that uptake of calcium by the ER
through the Ca+2 pump SERCA2b is regulated by PDIA3 and vitamin D [120]. It should be
recalled, however, that the deletion of VDR also impairs bone formation [118], but it seems
that PDIA3 but not VDR is essential for fast response to vitamin D, including activation
of protein kinase C (PKC) signaling pathway [121] or a protection against UV-induced
thymine dimer formation and DNA damage [122]. Furthermore, chondrocytes with a VDR
knockdown but expressing PDIA3 showed a rapid increase in PKC levels and accelerated
proteoglycan production in response to 1,25(OH)2D3. Thus, a distinct role for VDR and
PDIA3 in 1,25(OH)2D3-mediated proliferation control of rat growth plate chondrocytes
was postulated [81].
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Association of PDIA3 with cell membrane signaling is strongly supported by obser-
vation of its interaction within caveolin-1 [123], which is the main scaffolding protein
of caveolae (small invaginations of the plasma membrane which play important role in
membrane singling and transmembrane trafficking). This observation at least partially
explains the nature of PDIA3-driven rapid response to vitamin D through the association of
PDIA3 with cell membrane caveolae and the activation of downstream signaling, including
calcium mobilization, IP3, DAG, and cAMP production. PDIA3 was also found to regulate
other intracellular pathways. For example, it was shown that 1,25(OH)2D3 triggers PDIA3-
mediated rapid signaling cascade via CAMK2G (calcium/calmodulin dependent protein
kinase II gamma), PLA2, PLC, and PKC, followed by an activation of mitogen-activated
protein kinases (MAPK1 and MAPK2) [111,124]. Similarly, the PDIA3 membrane complex
takes part in the rapid activation of WNT5A (Wnt family member 5A) by 1,25(OH)2D3-
stimulated calcium influx and generation of secondary messengers, such as cAMP and/or
IP3 [101]. Finally, some reports suggested nuclear localization of PDIA3 [114,125]. It is well
established that PDIA3 has a noncanonic ER retention signal, Q/KEDL, but the presence
of a Lys-rich nuclear localization signal was also suggested [111]. However, other studies
suggested that TNFα, but not 1,25(OH)2D3, triggers fast translocation of PDIA3 to the nu-
cleus [126]. In an addition, an active form of vitamin D was shown to trigger translocation
of the complexes of PDIA3, with other transcription factors including STAT3 [127–129]
and NF-κB [130]. Furthermore, binding of PDIA3 to DNA in close proximity to the STAT3
binding site was shown, and its regulatory role in the expression of at least a subset of
STAT3-dependent genes was postulated [129]. Interestingly, other groups also showed
that PDIA3 binds to specific fragments of DNA [104,131] and is involved in the regulation
and expression of genes, including MSH6, TMEM126A, LRBA, and ETS1 [104]. Finally,
PDIA3 was also found to support trafficking of retinoic acid receptor alpha (RARA) into the
nucleus and subsequent degradation in Sertoli cells [132]. However, the effect of vitamin D
on this process still requires verification.

In summary, the nature of direct or indirect interactions of 1,25(OH)2D3 with PDIA3
associated with membranes is still not fully understood since the biding side was not fully
characterized. However, there is growing evidence that PDIA3 modulates the response to
vitamin D. Furthermore, it is still under debate whether 1,25(OH)2D3 triggers translocation
of PDIA3 into the nucleus and whether PDIA3 can act as a transcription factor or if PDIA3
only facilitates the trafficking of other transcription factors [133].

5. Direct or Indirect Regulation of Ion Transport by Vitamin D Metabolites

Keeping in mind that one of the best-described fast nongenomic targets of vitamin D
is calcium influx, it could be speculated that vitamin D and its derivatives bind directly to
ion channels or proteins affecting ion transport across the membranes. For example, the
binding of sulfated and glucoronated derivatives of 25(OH)D3 to the multidrug resistance
proteins SLCO1B1 (OATP1B1) and SLCO1B3 (OATP1B3) was described [134]. On the other
hand, it is well established that 1,25(OH)2D3, through the genomic pathway, regulates
expression of cell membrane transient receptor potential cation channels (TRPV1, 5, and
6), which at least in part explains the impact of vitamin D on calcium influx and cell
proliferation [95,135–137]. Furthermore, 1,25(OH)2D3 increases expression of K+ two-
pore domain channel subfamily K member 3 (KCNK3 expression) [138] but decreases the
level of mRNA for potassium channels KCNH1 (Kv10.1) [139,140] and TASK-1 [138]. The
electrophysiological studies on conductivity of ion channels showed that 1,25(OH)2D3, at
100 nM concentration, acts as a mild agonist of the TRPV1 channel. In an addition, 25OHD
and 1,25(OH)2D can also act as inhibitors of capsaicin-induced TRPV1 activity [136,141].
Molecular docking studies suggested that 1,25(OH)2D3 shared the capsaicin binding site
at the vanilloid binding pocket of the TRPV1 [136]. Other studies suggested that the
fast effect of 1,25(OH)2D3 on an ion transport may be mediated through activation of
L-type calcium channels. Calcitriol triggered an increase in the L-type calcium current
and the fast transient outward K+ current in myocytes. Furthermore, fast response to
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vitamin D depended on protein kinase A (PKA) and was absent in myocytes derived
from mice with VDR knockout. Subsequent, intracellular Ca2+ mobilization resulted in
ventricular myocytes’ contractility [142,143]. Finally, activation of chloride channels by
vitamin D was found to be involved in the protection of human skin (ex vivo) from UV
irradiation [144]. Interestingly, the modulation of mitochondrial potassium channels by
1,25(OH)2D3 has been shown recently [145] (the effects of vitamin D on mitochondria
are discussed in Chapter 8). These intriguing electrophysiological observations require
further investigations in order to provide more mechanistic details and the physiological
significance of a direct impact of vitamin D on ion transport.

6. Nongenomic Activity of VDR

It must be underscored that the time frame (seconds to minutes) of rapid membrane
responses to vitamin D virtually excludes the involvement of the transcriptional activity
of VDR. Furthermore, multiple studies on the cell lines or model organisms with deletion
of VDR have strongly suggested that rapid responses to vitamin D do not require the
presence of vitamin D receptor (VDR). Thus, it seems that PDIA3, but not VDR, regulates
the nongenomic activities of vitamin D [119,121,122]. However, the requirement of VDR in
nongenomic activities of vitamin D may be strongly affected by the experimental model
used in the study (e.g., cell type specific, type of assay). Furthermore, direct or indirect
interaction between VDR and PDIA3 should also be considered. Indeed, several studies
reported a membrane localization of VDR as well as colocalization with PDAI3 and caveolin
1 (CAV1) [146]. Interestingly, some reports have suggested that PDIA3 may serve as
molecular chaperone for VDR [115,116]. However, as it was postulated above, at least some
effects of 1,25(OH)2D3, such as rapid activation of PKC, are also observed in cells lacking
VDR and thus are VDR-independent. On the other hand, a mutation within the isomerase
catalytic side and removal of the KDEL motive (ER retention signal) of PDIA3 abolish this
activity [116].

VDR was also detected in mitochondrial membranes [147–149] or even lipid
droplets [150]. Interestingly, the existence of a second ligand-binding domain of VDR
responsible for membrane signaling was postulated [27,151]. Although rapid activation
of PLA2 was attributed to PDIA3, some other effects—such as 1,25(OH)2D3 activation
of the SRC (SRC proto-oncogene, nonreceptor tyrosine kinase) WNT pathway [152–155],
sonic hedgehog signaling molecule (SHH) [156–160], and NOTCH [161,162] signaling
pathways [155]—were found to be VDR-dependent. Interestingly, VDR and NF-kB share
DNA binding sites that may explain the influence of vitamin D on immune response [163].
Taken together, VDR may be involved in the activation of at least some of the
nongenomic activities triggered by vitamin D, most probably in cooperation with
PDIA3 [101,102,111,116,124,132,146,164,165].

7. Is Vitamin D as a Scavenger of Free Radicals or Their Source?

It is established that UVB is a major factor contributing to skin malignancy, but at the
same time, it is essential for epidermal vitamin D production [60]. It could be hypothesized
that during evolution, vitamin D may be adopted in direct or indirect response to radiation.
Alternatively, UVB-driven vitamin D production may represent its primary function, which
protected primitive aquatic organisms from UV or oxidative stress long before development
of its endocrine function as a calcium–phosphate regulator.

The concept of a direct involvement of vitamin D in response to UV originated from
a simple question: Can one overdose on vitamin D by sun tanning? This issue was ad-
dressed more than 40 years ago by Micheal Holick et al. in the classic paper [18]. It was
shown that prolonged exposure to UVB did not lead to excessive accumulation of vitamin
D. In fact, surplus of vitamin D was fast and efficiently removed by further structural
rearrangements involving production of 5,6-transvitamin D3, suprasterols I and II in the
skin [18]. Further studies revealed that irradiation of 5,7-dienes lead also to the formation
of 5,7,9(11)-trienes with probable generation of a singlet oxygen, which may act as a pho-
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tosensitizer [166,167]. Finally, it was shown that extensive irradiation of vitamin D and
its analogs (such as isotachysterol) resulted in the formation of large groups of hydroxyl-,
peroxy derivatives [18,168,169]. Detection of nonclassical products of UVB triggered pho-
tolysis of 5,7-dienes (7DHC and its natural or synthetic derivatives) might represent a
natural mechanism of regulation of vitamin D levels as well as a cell protective mechanism.
However, it is still not fully understood whether those generally unstable byproducts may
be acceptors or also donors of reactive oxygen species (ROS). For example, accumulation of
5,7-dienes and 5,7,9(11)-trienes is important in the etiology of a 7∆-reductase deficiency
syndrome (Smith-Lemli-Opitz syndrome—SLOS) [166,167,170]. In this syndrome, the lack
of the key enzyme converting 7DHC to cholesterol results in multiple metabolic defects
with accumulation of 7DHC and its steroidal derivatives, including cholesta-5,7,9(11)-trien-
3β-ol (9DDHC) [167] and pregna-5,7-diene-3b,17a,20-triol [170]. It was postulated that
oxidation of 7DHC and 9DDHC leads to severe photosensitivity in SLOS patients with
potential production of highly reactive singlet oxygen [166,171]. Nevertheless, it is still not
known whether the potential phototoxicity of 7DHC derivatives is unique to SLOS patients
or if it could be a general property.

Solar UV radiation reaching human skin damages cells and tissues directly or indi-
rectly through the production of ROS, which are exemplified by superoxide and hydrogen
peroxide [60,172,173]. UVB also induces DNA lesions, including formation of cyclobutane
pyrimidine dimers (CPDs) [174], while UVB-generated ROS target guanine, leading to
the subsequent generation of 8-oxo-7,8-dihydro-20-deoxyguanosine (8-OHdG) [55,175].
Unrepaired UV-induced DNA damage results in the accumulation of mutations, which
contribute strongly to the formation of skin neoplasms [1,55,60]. On the other hand, it is
well established that vitamin D protects skin cells from UVB-induced damage (including
DNA damage and induction of inflammation), as was shown on various models, including
in vitro, mice models, and human subjects [175–178]. Thus, it was postulated that cuta-
neous production of vitamin D protects skin cells from UV-driven carcinogenesis. The
mechanism requires vitamin-D-induced upregulation of the genes involved in ROS re-
sponse through VDR-mediated genomic pathways with additional activation of NRF2 [179].
However, PDIA3 was also shown to participate in cells’ protection against the formation of
thymine dimers after irradiation with UV [122]. The effect was associated with activation
of PKC signaling and calcium influx [180]. In addition, 1,25(OH)2D3 protected cells from
UVR-induced thymine dimers via stimulation of chloride currents [144]. Photoprotective
effects of 1,25(OH)2D3 were also associated with an increase in p53 tumor-suppressor
protein translocation to the nucleus and a decrease in the level of nitric oxide species (NOS).
Vitamin D can also affect endothelial function through the nongenomic pathway through
the induction of PDIA3-mediated calcium, cAMP, Akt, and PKC downstream signaling,
which in turn affect endothelial NO synthesis (eNOS) activity [181]. Finally, the poten-
tial UV-protective effect of 1,25(OH)2D3 and other vitamin D derivatives and analogues
could be attributed to direct impact on mitochondria bioenergetics. It was postulated that
the process of DNA repair induced by UV requires substantial energy expenditure, and
1,25(OH)2D3 and its analogs may directly affect mitochondrial activities (discussed below).

In summary, although vitamin D photoproduction may represent the primary and still-
existing mechanism of cell protection against UVB and ROS/RNS, it must be underscored
that vitamin D hormonal activity, namely VDR-mediated induction of the genes involved in
UV and ROS/RNS, responses is also crucial for cell survival. On the other hand, potential
involvement of 7DHC derivatives with triene moiety, such as 9DDHC in ROS generation
(pro-oxidative), may be unique to SLOS.

8. Mitochondria as a Target for Vitamin D

Mitochondria are not only the powerhouse of the cell but also a key organelle to vita-
min D metabolism, including activation, modification, and inactivation by the cytochromes
of the P450 family (CYP27A1, CYP27B1, CYP24A1, and CYP11A1) [6,182,183]. All of those
enzymes are located in the inner mitochondrial membrane. Thus, at least theoretically, all
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steps of the activation of vitamin D including hydroxylation in position 25 (CYP27A1) and
position 1 (CYP27B1), as well as deactivation by hydroxylation at C-24, could be conducted
within mitochondria. Although it must be acknowledged that CYP2R1 located in the
endoplasmic reticulum is the major enzyme responsible for 25-hydoxylation, CYP27A1
also shows such activity [182,184]. Interestingly, CYP11A1 (CYP450scc—the major enzyme
of steroidogenesis responsible for conversion of cholesterol to pregnenolone) was shown
to also metabolize vitamin D, tachysterol, and lumisterol, which opens a new route of
secosteroidogenesis [185–187]. There is no doubt that mitochondria are the direct target
for vitamin D and its metabolites, but the mechanism of an entry, a regulation of vitamin
D metabolism, or its direct impact on mitochondrial biogenesis or oxidative stress still re-
quires an in-depth investigation. As was discussed previously, megalin may be responsible
for vitamin D import to the cell. Interestingly, recent studies have suggested that megalin
may also be involved in the translocation of some molecules directly to the mitochondria.
Furthermore, mitochondrial megalin was found to be involved in the defense against ROS,
and its knockout impairs mitochondrial respiration and glycolysis [93]. Megalin itself was
colocalised with mitochondria in association with stanniocalcin-1 and SIRT3, which are
involved in a defense against ROS [93]. Interestingly, it was shown that megalin is involved
in the intracellular traffic and mitochondrial import of angiotensin II, stanniocalcin-1, and
TGF-β [93], which raises the question of whether vitamin D and its metabolites, in concert
with DBP, could be acquired and target mitochondria accordingly.

An active form of vitamin D also has indirect impact on mitochondria function through
the VDR-dependent regulation of expression of genes involved in the oxidative stress re-
sponse [145,183,188]. By using transcriptomic analyses focused on mitochondrial genes, it
was discovered that 1,25(OH)2D3 inhibits expression of the several genes involved in ox-
idative phosphorylation and fusion/fission and upregulates genes involved in mitophagy
and ROS defense [188]. In seems that the activation of selected genes’ coding proteins
in response to ROS by 1,25(OH)2D3 is mediated by nuclear-factor-erythroid 2-related fac-
tor 2 (NRF2) [179,188]. NRF2 is a key transcription factor that can bind to antioxidant
response elements (AREs) on DNA and initiate transcription of the genes responsible for
the protection of cells against oxidative stress associated with diabetic neuropathy [188].

An involvement of VDR in mitochondrial physiology was confirmed by observation;
deletion of VDR affects mitochondrial membrane potential, enhances ROS production [147],
and results in subsequent mitochondrial damage [189]. Removal of VDR also resulted
in an increased expression of elements of the respiratory chain, such as cyclooxygenase
2 and 4 (COX2 and 4), the ATP synthase subunits (6MT-ATP6 and ATP5B) [147], and
subunits II and IV of cytochrome c oxidase [134]. Interestingly, VDR was also found in
mitochondria, but in contrast to its nuclear translocation, its import to mitochondria is most
probably ligand-independent [148]. VDR was found to interact with the mitochondrial
permeability transition pore (PTP), the voltage-dependent anion-selective channel (VDAC).
Recently, it was shown that vitamin D regulates the activity of mitochondrial calcium
channels. Furthermore, VDR may also directly impact cholesterol and vitamin D transport
through the interaction with the steroidogenic acute regulatory (StAR) protein [148]. The
mitochondrial localization of VDR was linked to the redirection tricarboxylic acid cycle
(TCA) towards biosynthesis, which is the common feature of neoplastic rather than fully
differentiated cells [189]. Thus, it seems that VDR may affect mitochondrial function both
through the activation of classic genomic pathways and also directly inside of mitochondria,
including interaction with the mitochondrial genome. Interestingly, the protective anti-
ROS properties of 1,25(OH)2D3 were shown on isolated mitochondria. Thus, the genomic
effects of VDR activation may not be fully required [190]. It must also be underscored that
1,25(OH)2D3 may protect mitochondria from potential toxic insults, as it was shown that it
can attenuate the cytotoxicity induced by aluminum phosphide via inhibiting mitochondrial
dysfunction and oxidative stress in isolated rat cardiomyocytes [191].
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9. Clinical Implications of Nongenomic Pathways Activated by Vitamin D

It is well established that 20 ng/mL of 25(OH)D3 in the serum is an adequate concen-
tration for bone health. However, several studies and recommendations have suggested a
concentration of vitamin D >30 ng/mL as optimal in order to provide extraskeletal benefits.
Recently, it was postulated that even higher serum concentrations of vitamin D should be
considered. For example, it was calculated that 37 ng/mL during pregnancy decreases the
chance of complications in patients with risk of preeclampsia to values characteristic for the
entire population [192]. Even higher concentrations (40–50 ng/mL) were proposed to be
beneficial for extraskeletal outcomes of vitamin D, including its anticancer properties [193].
This leads to the significant change in recommendation concerning vitamin supplemen-
tation (800 IU vs. 4000 IU) and very high doses (50,000–100,000 IU) are recommended
for patients with a severe vitamin D deficiency. However, potential hypercalcemia and
hypercaluria must be considered as a potential side-effect of such as supplementation.
However, several studies revealed that vitamin-D-induced hypercalcemia is observed
usually in patients with defects in vitamin D metabolism (e.g., patients with CYP24A1
mutation) [194]. This raises the very interesting question of whether an activation of the
alternative nongenomic pathways is responsible for the additional phenotypical effects of
vitamin D. It was shown that 1,25(OH)2D3 binds to VDR with an affinity of 0.1 nmol/L and
to PDIA3 with an estimated Kd of 1 nmol/L [195]. Thus, it could be speculated that higher
doses of vitamin D supplementation and higher (30 ng/mL or higher) serum concentrations
of 25(OH)D3 are essential for an effective activation of nongenomic pathways. Nevertheless,
this speculation requires in-depth laboratory and clinical investigations.

The description of transcaltachia was historically the first indication of existence of
nongenomic pathways activated by 1,25(OH)2D3 [100]. This rapid vitamin-D-stimulated
transport of calcium through intestinal endothelium is an important factor regulating the
level of calcium in the body. Another clinical implication of nongenomic pathways is direct
scavenging of UV-generated ROS and RNS observed as early as 15–30 min after treatment
of irradiated keratinocytes with 1,25(OH)2D3 (please see [73] for discussion). In an addition
to the clear UV-protective effects of vitamin D (see also chapter 7), it was postulated that
vitamin D protects against skin photocarcinogenesis [57]. 1,25(OH)2D3 also affects ERK,
PARP-1, and p53 activities and takes part in DNA protection and repair [73]. It is well
established that increased production of ROS and deregulation of cellular energetics is a
characteristic feature of cancer progression and drug resistance [196]. Thus, vitamin D may
directly inhibit carcinogenesis through ROS scavenging. In fact, is also know that activation
of VDR-dependent genomic pathway protects cells by activation of transcription of the
genes involved in the response to ROS and DNA-repair [197]. Involvement of genomic
pathways in the anticancer activities of vitamin D and its derives is also supported by
observation that expression of VDR expression decreases with cancer progression [24].
However, it was also postulated that the extraskeletal benefits of vitamin D, including
effects on cardiovascular and autoimmune diseases and cancer, are observed at relatively
high concentrations [198]. Indeed, it was recently estimated that an increase in the serum
concentration of 25(OH)D from 10 to 80 ng/mL would decrease cancer incidence rates by
70 ± 10% [60]. Thus, it is tempting to suggest that higher doses of vitamin D are required
for the activation of alternative pathways, but this still remains to be confirmed.

Another, striking nongenomic activity of 1,25(OH)2D3 was shown on models of colla-
gen or ADP-induced platelet aggregation. Interestingly, the inhibitory effect of 1,25(OH)2D3
on platelet aggregation varied depending on the state of diabetes [199]. Although VDR
was detected in platelets and associated with mitochondria, because platelets naturally
lack cell nuclei [149], only activation of nongenomic pathways should be considered. In
an addition, it was also shown that glycemic control was inversely associated with high
platelet aggregation and low levels of 25(OH)2D in diabetic patients [199]. These findings
provide important clinical implication of alternative pathways activated by vitamin D.

The impact of PDIA3 and alternative pathways activated by vitamin D was also shown
on an experimental model of cholangiopathy induced by Abcb4 knockout in mice. Firstly,
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additional silencing of VDR (VDR and Abcb4 double knockout) promotes a proinflamma-
tory phenotype in cholangiocytes. Interestingly, vitamin D—or its analog, calcipotriol—
treatment resulted in PDIA3-dependent reduction of inflammatory response [200]. In-
terestingly, PDIA3 was also found to be essential for the autolysosomal degradation of
Helicobacter pylori [201]. Thus, activation of membrane response with potential involve-
ment of PDIA3 may play a role in the regulation of immune response, including response
against pathogens.

In melanoma, it was found that decreased expression of VDR correlates with poor
prognosis. On the other hand, overexpression of PDIA3 was shown to be a poor survival
factor in patients with clear cell renal cell carcinoma—ccRCC [127]. Thus, it seems that
proper functioning of classic VDR-dependent pathways as well as activation of alternative
pathways is essential in order to maintain body homeostasis as well as to protect from
potential harmful insults, such as UVB or pathogen infection.

In summary, although genomic pathways activated by VDR still remain the major tar-
gets for vitamin D, with clear clinical implications (e.g., rickets), the existence of alternative
pathways explains fast responses to vitamin D, and its direct impact on mitochondria and
other intracellular processes. Unfortunately, the pleiotropic effects of vitamin D genomic
activities, and the potential involvement of VDR in nongenomic regulation, hinder the
studies of vitamin D membrane signaling, its effects on mitochondria, and the precise
determination of the role of PDIA3 (Table 1).

Table 1. Genomic and membrane pathways activated by vitamin D.

Genomic Membrane

Time course Delayed response (hours–days) Fast response (minutes–hours)

Primary
Mechanisms

1,25(OH)2D3 binds to VDR, which is translocated to the
nucleus together with RXR, where the complex binds

vitamin-D-responding elements (VDRE) of DNA.

1,25(OH)2D3 affect activity of membrane proteins including
PDIA3 and direct or indirect activity of ion channels.

ROS scavenging.

Primary effects

Transcriptional regulation of up to 3000 genes resulting in
inhibition of cell proliferation, induction of cell

differentiation, immunomodulation, UVB response, ROS
response, and alteration of mitochondrial function.

Membrane responses with activation of secondary
messengers (calcium, cAMP, IP3, DAG). Transcaltachia,
modulation of mitochondrial bioenergetics. Direct cell

protection against UV, ROS, and pathogens.

Secondary
mechanisms

Alteration of the expression of several TFs results in
activation of secondary genomic responses.

Activation of secondary messages may activate MAPK/ERK,
P53, WNT, SSH, STAT1-3, and NF-kappaB genomic activities.

PDIA3 was found in the nucleus. Thus, its function as
transcriptional regulator is considered.

Secondary effects

A dissection of primary from secondary genomic effects still
requires careful investigation. Potential secondary impact of
membrane signaling on genes expression adds an additional

complexity to vitamin D response.

Modulation of activity of signaling pathways MAPK/ERK,
P53, WNT, SSH, STAT1-3, and NF-kappaB results in

modulation of cell physiology as well as activation of
secondary genomic responses.

Role of VDR VDR act as a transcription factor. VDR may be engaged in membrane signaling.

Role of PDIA3 Potential secondary genomic effect is considered as PDIA3
was found in the nucleus. PDIA3 is involved in initiation of membrane signaling.

Role in calcium
regulation

Change in the expression of the genes responsible for
calcium homeostasis

Rapid direct, or indirect effect on calcium transport
(transcaltachia)

Effect on
mitochondria

Indirect though alteration of the expression of mitochondria
related genes

Potential direct effect on mitochondrial proteins (including
cytochromes P450) and potassium ion channels from the

inner mitochondrial membrane

UVB protection Indirect through activation of stress response genes and DNA
repair mechanisms Potential direct ROS scavenging

Immunomod-
ulation

Inhibition of B cell differentiation and immunoglobulin
secretion, shift from a Th1 to a Th2 response, induction of T
regulatory cells, decrease of expression of proinflammatory

cytokines, and stimulation of expression of
antimicrobial peptides.

Regulation of calcium influx may affect immune
cell physiology.
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10. Beyond 1,25(OH)2D3

Although it is not the major scope of this review, potential biological activities of
vitamin D metabolites or analogs must be acknowledged. For years, it has been believed
that calcitriol is the only active metabolite of vitamin D. In fact, the binding of 25(OH)D3
or 24,25(OH)2D3 to VDR is at least 100–1000 times weaker in comparison to 1,25(OH)2D3.
Relatively recently, some alternative metabolic routes for vitamin D have been described,
and some unique biological futures of those secosteroids have been proposed. In silico
docking experiments showed the variable binding affinities to VDR of various alternative
vitamin D metabolites or analogs. However, 1,25(OH)2D3 remained its main unquestioned
ligand responsible for activation of the classic genomic response. It seems that alternative
metabolites may alter or tune up or down transcription response to vitamin D. For example,
20(OH)D3 and 20,23(OH)2D3 generated by CYP450scc (CYP11A1) inhibit the activity of key
factor in immune response NF-kB [202] or stimulate ROS response through NRF2 [179,187]
similarly to 1,25(OH)2D3. However, it is believed that in addition to VDR, they may also
target other transcription factors, such as RORα and RORγ [34,35] or AhR [28]. For many
years, lumisterol and tachysterol we considered nonfunctional isomers of vitamin D, but
recent studies have proposed their biological activity and further metabolism, which opens
a new chapter in the field of secostroids [187,203]. Thus, it seems that 1,25(OH)2D3 is not
the only functional metabolite of vitamin D and that other secosteroids may help in the
fine-tuning of vitamin D response or even replace 1,25(OH)2D3, but it seems that higher
concentrations are required.

11. Conclusions

Keeping the pluripotent properties of vitamin D in mind, the presence of alternative
intracellular pathways may help to explain a variety of responses [204]. VDR genomic
activity of course plays the central role in 1,25(OH)2D3 signaling. However, it must be
noted that from the evolutionary perspective, some primal functions, such as protection
from ultraviolet radiation, should be considered. On the other hand, membrane response,
including calcium mobilization, may provide a fast route of action for this powerful secos-
teroid. The detailed mechanisms underlying membrane nongenomic responses still remain
to be elucidated. However, the role of PDIA3, as well as that of membrane-associated VDR,
should be considered. Furthermore, direct or indirect interaction of vitamin D metabolites
with other proteins including megalin, ion channels, and as their impact on mitochondria
may help us to understand the versatility of its phenotypic effects [64,186,205]. However,
further in vivo studies and randomized controlled trials [206] are required to confirm
physiological and clinical importance of alternative pathways of vitamin D signaling.
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