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46 Abstract 
47 Vitamin D has many physiological functions including upregulation of intestinal calcium and 
48 phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as 
49 actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of 
50 vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor (VDR)-mediated 
51 transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds 
52 of genes in many tissues. This comprehensive historical review provides a unique perspective of 
53 the many steps of the discovery of vitamin D & its deficiency disease, rickets, stretching from 
54 1650 until the present. The overview is divided into four distinct historical phases which cover 
55 the major developments in the field and in the process highlighting the: a) first recognition of 
56 rickets or vitamin D deficiency; b) discovery of the nutritional factor, vitamin D and its chemical 
57 structure; c) elucidation of vitamin D metabolites including the hormonal form, 1,25-
58 dihydroxyvitamin D3; d) delineation of the vitamin D cellular machinery, functions and vitamin 
59 D-related diseases which focused on understanding the mechanism of action of vitamin D in its 
60 many target cells.  
61
62 Introduction
63 The history of vitamin D is a rich and storied subject and is now over 350 years old. It 
64 began in the early 1600s with the first descriptions of the human deficiency disease: rickets in 
65 children and osteomalacia in adults. Of course, there were no precise medical details that 
66 distinguished it from other bone diseases but treatises describing the symptoms and lithographs 
67 from that time showing bone deformities resembling rickets leave little doubt that it was vitamin 
68 D deficiency. It took another 250 years to define the cause of vitamin D deficiency in the 1900-
69 1920 period when physicians and biochemists elucidated the role of sunlight and identified the 
70 chemical structure of the two main forms of the vitamin D molecule, vitamin D2 and vitamin D3.  
71 Another 50 years elapsed before the metabolism of vitamin D was first described in 1967 and the 
72 active form of vitamin D, namely 1,25-dihydroxyvitamin D (1,25-(OH)2D) discovered. The period 
73 of time since has witnessed the exciting realization that vitamin D has its own set of dedicated 
74 specialized machinery consisting of transport proteins, metabolic enzymes and vitamin D receptor 
75 to mediate the actions of vitamin D, not only in bone, but in many other tissues around the body 
76 where it has a myriad of different physiological effects.
77
78 Before we get into the history of vitamin D, let us first remind the reader of the general 
79 aspects of its nomenclature, origins and principal functions. Vitamin D is a steroidal substance 
80 required by all vertebrates including humans to maintain blood calcium and phosphate within a 
81 narrow normal range and thereby support a healthy skeleton, muscle contraction, immune function 
82 and optimal cellular functions in many locations around the body [1]. The name vitamin D is a 
83 term coined by nutritionists, and is not a chemical term, which is defined as “a substance with 
84 anti-rachitic properties that will cure rickets”. In human biology, vitamin D usually refers to two 
85 substances: vitamin D3 (usually known as cholecalciferol) of animal origin and vitamin D2 
86 (referred to as ergocalciferol) of plant or fungal origin. These two forms have roughly equal 
87 potencies, similar metabolic patterns and identical effects in the body. 
88
89
90
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91 Because of the four phases of vitamin D history, this review is divided into four sections 
92 each summarizing one particular time period:
93 1: 1650-1890: History of vitamin D Deficiency (Rickets)
94 2: 1890-1930: History of the discovery of vitamin D and its structural elucidation
95 3: 1930-1975: History of the discovery of vitamin D metabolites including 1,25-(OH)2D3
96 4: 1975-Present: History of the discovery of the vitamin D cellular machinery, functions and   
97 vitamin D-related human diseases. 
98
99 Since the different facets of the history of vitamin D represent interesting topics, and span 

100 many centuries, they have been reviewed by many previous historians, including the current 
101 author, and interested readers are invited to further access these because they focus on different 
102 aspects of the overall story [2-8]. 
103
104 1: 1650-1890: History of vitamin D Deficiency (Rickets)
105
106 There is no doubt that rickets was prevalent in Europe long before it was recognized as a 
107 specific disease in the 15th Century but the earliest documentation of the word “rickets” was in a 
108 domestic receipt book of an English family in 1632 and the earliest printed record of rickets as a 
109 disease causing death in the London Bill of Mortality in 1634 [reviewed by 2-4]. The term rickets 
110 is thought to have its origins in the verb in the Dorset dialect to “rucket”, which means to breathe 
111 with difficulty. However, some claim the term rickets is derived from the Anglo-Saxon word 
112 “wrikken”, meaning to twist. Rickets and osteomalacia were first clearly described by Daniel 
113 Whistler in the Netherlands (1645) as a condition in which the skeleton was poorly mineralized 
114 and deformed [9]. Francis Glisson (1650) provided the first documented records with his book 
115 entitled “De Rachitide” first published in Latin in 1650 and then translated into English in 1671 
116 [10]. It features a lithograph of children with bowing of the legs and skeletal deformities which 
117 are the hallmarks of vitamin D deficiency. One of those Glisson lithographs was reproduced as a 
118 frontispiece in a landmark treatise on “Rickets including Osteomalacia and Tetany” by AF Hess 
119 in 1929 [11]. It is reproduced here as Figure 1.
120
121 A more recent definition of vitamin D deficiency has grown to include defective 
122 chondrocyte differentiation, lack of mineralization of the growth plate but the common feature of 
123 vitamin D deficiency is insufficiently mineralized or calcified bone matrix [1,12,13]. Rickets is 
124 characterized by a deformed and misshaped skeleton, particularly bending and bowing of the long 
125 bones and enlargement of the epiphyses of the joints of the rib cage, arms, legs and neck. Victims 
126 have painful movements of the rib cage and difficulty breathing. In China, medical texts refer to 
127 deformities of the rib cage in severe rickets as “chicken breast” [5]. Severe rickets is often 
128 accompanied by pneumonia. The loss of the important role of vitamin D in strengthening the 
129 immune system compounds this problem. Though rarely is rickets life-threatening, it certainly 
130 lowers the quality of life for the afflicted individual and leads to secondary problems. One of these 
131 secondary effects of rickets occurs in young women who had vitamin D deficiency in childhood 
132 causing deformities of the pelvis which result in difficulties in childbirth [14]. Sorter [14] 
133 speculates that rickets in early life must have resulted in numerous deaths of women during their 
134 first delivery.    
135
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136 Vitamin D deficiency is partly the result of inadequate skin synthesis of vitamin D3 from 
137 7-dehydrocholesterol compounded by a low dietary intake of vitamin D2 from plant or fungal 
138 sources or vitamin D3 from animal products. The advent of the Industrial Revolution in Western 
139 Europe heralded in massive air pollution in the form of smoke from mills and burning of fossil 
140 fuels. This dramatically reduced the amount of UV light reaching the ground. Since the workers 
141 needed for these new industrial jobs were required to move from their rural locations into dingy, 
142 poorly-lit cities, their exposure to UV light diminished and skin synthesis of vitamin D was 
143 reduced. Rickets resulted and was associated with lack of exposure to sufficient sunlight. Thus the 
144 18th and 19th centuries saw a higher increase in rickets in the industrialized cities of northern 
145 Europe. The Dickensian character Tiny Tim, of the novel A Christmas Carol, clearly represents a 
146 child with a deformed skeleton who must have been a common sight in the dark cities of the late 
147 19th century [7]. Rickets was particularly prevalent in the industrialized Britain of the 16th-20th 
148 centuries and thus it is no surprise that it was referred to in old texts as “the English disease” [7,15].
149
150 Despite the fact that rickets seemed to be associated with lack of exposure to sunlight, by 
151 the late 1700s some including Percival [16] in the UK were advocating the use of cod-liver oil for 
152 the treatment of rickets suggesting a nutritional aspect to vitamin D. In contrast, in the early 1800s 
153 Sniadecki [17] in Poland was documenting the differential incidence in city-dwellers and rural-
154 dwellers suggesting some environmental factor was involved. He speculated that sunlight or fresh-
155 air might be involved in the etiology of the disease. By the end of the 19th century, a rigorous 
156 debate roared on whether rickets was caused by the lack of some dietary substance or an 
157 environmental factor and how could these two points of view be reconciled. 
158
159 2: 1890-1930: History of the discovery of vitamin D and its structural elucidation
160
161 By the 1890s some researchers such as Owen [18] and Palm [19], who clearly supported 
162 the environmental theory, produced evidence that there were big geographical differences in the 
163 incidence of rickets in different parts of the UK and northern and southern China. Palm, a medical 
164 missionary, went on to suggest that exposure of children to sunlight would cure rickets [19]. 
165 Subsequently, researchers in Europe and the USA namely Buchholtz (1904), Raczynski (1913), 
166 Huldshinsky (1919) and later Chick (1922) Hess and Weinstock (1924) performed experiments in 
167 which laboratory animals and children with rickets could be cured with sunlight or light from 
168 mercury arc lamps [7, 20-24].  This clearly demonstrated that lack of exposure to UV light was 
169 one cause of rickets.
170
171 But the proponents of the theory that a dietary factor could also be involved continued with 
172 their experiments too. The early 20th century was a momentous period in nutritional research in 
173 which nutritionists showed that a diet of highly purified carbohydrates, protein, fat and salt is 
174 unable to fully support growth and life of experimental animals [25]. By adding various “trace 
175 factors” researchers were able to restore growth and a full range of physiological actions.  The first 
176 of these trace factors was thiamin discovered by Funk [26] which cured neuritis in what Funk 
177 termed the “vital amine or vitamin theory”. Thiamin was later renamed vitamin B1 but it was one 
178 of a number of vitamin substances that are defined as “trace compounds which are derived from 
179 the diet and are required in small amounts per day and perform an essential role critical to life”. 
180 Vitamin D was identified as one of these substances playing a critical role in skeletal growth and 
181 calcium & phosphate homeostasis. However, strictly speaking vitamin D has been misnamed since 
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182 it can also be derived from exposure to UV light and is not required to be in the diet. In practise 
183 and for a variety of social and religious reasons, many populations around the world do not receive 
184 adequate UV light, especially during the winter months, so that a dietary intake is essential.      
185
186 The discovery of the nutritional factor, later termed vitamin D by McCollum [27], came 
187 largely as the result of the work of a number of researchers: Mellanby, McCollum, Steenbock and 
188 Hart working independently. Sir Edward Mellanby [28] in the UK reasoned that rickets might be 
189 due to a dietary deficiency and managed to produce beagle dogs with severe rickets by feeding 
190 them oatmeal and then cured their rickets with cod-liver oil. Since cod-liver oil is a mixture of 
191 lipids and a rich source of vitamin A, it was not clear what the active ingredient might be. 
192 McCollum [29], working firstly at the U Wisconsin and then Johns-Hopkins, heated & bubbled 
193 oxygen through the cod-liver oil to destroy the vitamin A and found that the product still cured 
194 rickets. Building on the new vitamin nomenclature, he termed the new substance vitamin D. But 
195 how was the field to reconcile the apparently unconnected findings that UV light and a nutritional 
196 substance termed vitamin D could both cure rickets? Harry Steenbock also working at the U 
197 Wisconsin-Madison performed the definitive experiment. Steenbock and Black experimented with 
198 the diets of goats and found that sunlight or UV irradiation of the animals or their diets resulted in 
199 rickets being cured in the goats [30]. Steenbock traced the bioactive substance in irradiated food 
200 to the non-saponifiable fraction of lipids in the diet and showed that it cured rickets [31]. Dietary 
201 vitamin D was born. 
202 Subsequently, Steenbock was able to show that irradiated yeast contained significant 
203 amounts of vitamin D, later shown to be vitamin D2; and that the yeast could be irradiated and 
204 added to milk which formed the basis of the first food fortification with vitamin D [5]. Though, 
205 Steenbock and the University of Wisconsin filed a patent for milk fortification with vitamin D, the 
206 proceeds from this discovery were used to establish the Wisconsin Alumni Research Foundation 
207 (WARF) which was one of the prototypical organizations intended to allow universities to plough 
208 the benefits their research into future research. WARF funded the research of a number of scientists 
209 inside and outside of the vitamin D field, included several Nobel laureates, with the proceeds of 
210 Steenbock’s patent. Furthermore, vitamin D fortification of a variety of foodstuffs (including milk, 
211 margarine, bread and even beer) has become a major nutritional tool in the fight to prevent rickets 
212 and osteomalacia around the world [5]. 
213
214 In the late 1920s, Windaus and his colleagues [32] isolated the key anti-rachitic substance 
215 from a mixture of irradiated plant sterols and named it vitamin D1, although they did not identify 
216 its structure. Later vitamin D1 was shown to be a mixture of vitamin D2 and tachysterol. A British 
217 group headed by Askew [33] successfully identified and determined the structure of the anti-
218 rachitic, plant-derived sterol as vitamin D2 or ergocalciferol. Windaus’s group confirmed the 
219 structure of vitamin D2 [34] and also isolated and identified the animal-derived, anti-rachitic 
220 vitamin D3 or cholecalciferol and its skin precursor, 7-dehydrocholesterol [35]. For his discovery 
221 of the structures of vitamin D3, 7-dehydrocholesterol and several other sterols, Adolf Windaus was 
222 awarded the 1928 Nobel Prize for Chemistry. (Figure 2)  
223
224
225
226
227

Page 5 of 22 Accepted Manuscript published as EC-21-0594.R1. Accepted for publication: 04-Mar-2022

Copyright © 2022 the authors Downloaded from Bioscientifica.com at 03/05/2022 01:51:02AM
via free access



6

228 3: 1930-1975: History of the discovery of vitamin D metabolites including 1,25-(OH)2D3
229
230 Chemically synthesized vitamin D2 and vitamin D3 have been available since the 1930s and 
231 paved the way for the study of their biological functions and metabolism. The physiological roles 
232 of vitamin D are primarily its roles in calcium and phosphate homeostasis [1] and include:
233 1) Stimulation of intestinal calcium and phosphate absorption
234 2) Mobilization of calcium from bone
235 3) Renal reabsorption of calcium
236 All three of these functions serve to raise blood calcium and phosphate and ensure that these ions 
237 are available to ensure health and prevent rickets. Elucidating the details of these physiological 
238 functions became the main foci during the 1930-1960 time period and research revealed that 
239 vitamin D was intimately connected to the roles of other calcium and phosphate-related hormones 
240 including parathyroid hormone (PTH) and calcitonin. Details of these connections are beyond the 
241 scope of this chapter and are described in reviews [e.g. 1] and in other articles in this Special Issue.
242
243 In the 1960s, there was considerable debate over whether the functions of vitamin D were 
244 carried out by vitamin D itself or its possible metabolites. Consequently, intense effort was put 
245 into studying the metabolism of vitamin D by using chemically-synthesized radioactive versions 
246 of vitamin D2 and vitamin D3. The pioneer in this area was Egon Kodicek at the Dunn Nutritional 
247 Laboratories, U Cambridge UK. After 10 years of work, Kodicek [36] concluded that vitamin D 
248 was active without being metabolized. In retrospect, the radioactive vitamin D his group were 
249 using was insufficiently labeled to detect its metabolites. However, Hector DeLuca, again at the U 
250 Wisconsin-Madison, and the final graduate student of Harry Steenbock, synthesized radioactive 
251 vitamin D3 with much higher specific activity [37] and was able to demonstrate metabolism to 
252 more polar metabolites, the principal one being 25-hydroxyvitamin D3 (25-OH-D3) [38] made in 
253 the liver and the first identified natural vitamin D metabolite. 
254
255 25-OH-D3 proved to be more potent biologically than vitamin D3 and was present in the 
256 bloodstream at a higher concentration [38]. We now identify 25-OH-D3 as the principal circulating 
257 form of vitamin D. But that is not the extent of vitamin D metabolism. Several other groups then 
258 entered or re-entered the picture, including Dr Kodicek’s, as well as that of one of Dr DeLuca’s 
259 former graduate students Dr Anthony Norman. Amongst the other polar products of vitamin D3 
260 was a metabolite even more potent than 25-OH-D3, namely 1,25-dihydroxyvitamin D3 (1,25-
261 (OH)2D3) which is now universally accepted as the hormonal form of vitamin D3. Several groups 
262 including Dr Kodicek’s [39] Dr Norman’s [40] and Dr DeLuca’s [41] were credited with playing 
263 a role in the discovery and/or in the structural identification of 1,25-(OH)2D3. Kodicek’s group 
264 administered a mixture of radioactive [4-14C] & [1-3H]vitamin D3 preparations and showed that 
265 one polar metabolite lost its tritium atom during metabolism that aided in its identification as a 1-
266 hydroxylated compound [39]. Furthermore, the Cambridge group also showed that the hormone 
267 was biologically generated in the kidney [39,42]. Dr Norman’s group showed that the new 
268 metabolite was associated with the chromatin of intestinal mucosal cells and had greater biological 
269 activity than even 25-OH-D3 [40]. Holick et al [41] showed that the additional 1-hydroxyl group 
270 was in the 1- orientation and supported their identification of the metabolite as 1,25-(OH)2D3 
271 with mass spectrometry. Chemically synthesized 1,25-(OH)2D3 was first produced by Semmler et 
272 al [43] and made commercially by a group headed by Dr Milan Uskokovic at Hoffmann-La Roche 
273 in the early 1970s and is known clinically by the name calcitriol [44].
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274 The identification of the principal metabolites: 25-OH-D3 and 1,25-(OH)2D3 spawned a 
275 frenzy of research activity in the vitamin D area and the discovery of a number of other vitamin D 
276 metabolites [1]. Amongst these are the principal metabolites of vitamin D2 including 25-OH-D2 
277 [45], 1,25-(OH)2D2 [46] and 24,25-(OH)2D2 [47]. Also identified in that mixture of metabolites 
278 arising from radioactive vitamin D3 were several compounds that are presumed to be inactive 
279 catabolites including: 24,25-(OH)2D3, 25,26-(OH)2D3, 25-OH-D3-26,23-lactone, 1,24,25-(OH)3D3 
280 and calcitroic acid. [48-53] A summary of the main metabolites of both vitamin D3 and vitamin 
281 D2 along with their tissue source, biosynthetic enzyme, details of first reporting and biological role 
282 is presented in Table 1 and depicted in a metabolic pathway diagram (Figure 3).
283
284 4: 1975-Present: History of the discovery of the vitamin D cellular machinery, functions and   
285 vitamin D-related human diseases. 
286
287 The discovery of the active forms of vitamin D heralded in a search for: 
288 a) the signal transduction mechanisms to explain how 1,25-(OH)2D3 was able to produce its 
289 various biological effects; 
290 b) identification of the enzymes responsible for the synthesis and catabolism of 1,25-(OH)2D3; 
291 c) a clear understanding of the regulation of the vitamin D endocrine system 
292 These studies began almost as soon as metabolism was recognized in the late 1960s when Mark 
293 Haussler, in AW Norman’s laboratory, demonstrated that vitamin D metabolites associated with 
294 the chromatin [54]. Clear evidence of the protein that is now termed, the vitamin D receptor (VDR) 
295 was produced by Haussler’s lab [55]. The VDR protein from various species was later purified 
296 and its gene cloned by Haussler’s group [56,57]. Study of the pure protein has led to a 
297 determination of its crystal structure [58]. Parallel to these investigations of the VDR have come 
298 other studies on how it works both at the whole-body level in calcium and phosphate homeostasis 
299 and other pleiotropic functions [1,8,59] and at the cellular level in a classic steroid hormone super-
300 family like process through a transcriptional mechanism [60]. Over the past 30 years, Mark 
301 Haussler, Wes Pike & colleagues [61] have demonstrated that 1,25-(OH)2D3 works through a 
302 VDR-mediated mechanism that involves many coactivators and repressors to directly interact with 
303 and regulate hundreds of genes around the body. Other researchers, most notably Anthony Norman 
304 [62], have proposed that some of the actions of vitamin D occur through rapid non-genomic 
305 signaling pathways, possibly involving a plasma membrane vitamin D receptor but this protein has 
306 never been fully characterised at the molecular level. Nevertheless, there remains some uncertainty 
307 that all vitamin D ligands and analogs produce their effects through a genomic VDR mechanism 
308 [63].   
309
310 The history of two other components of the vitamin D machinery deserve some mention.
311 These are vitamin D-binding globulin [64,65] and the cytochromes P450-containing enzymes that 
312 metabolize vitamin D into its many metabolites [66].  Being a fat-soluble vitamin, Vitamin D 
313 requires a protein to transport it around the body and the vitamin D-binding globulin (usually 
314 abbreviated as DBP) performs this function. DBP was first identified as Gc (group specific 
315 component) in the 1970s and its properties have been reviewed extensively by the father figure of 
316 the field Roger Bouillon, U Leuven, Belgium [65]. DBP has a high affinity for most of the main 
317 metabolites of vitamin D, most notably 25-OH-D, and because of this 25-OH-D is the main 
318 circulating form in the blood. 
319
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320 The cytochrome P450-containing enzymes (CYPs) responsible for vitamin D metabolism 
321 were first studied in the early 1970 in tissue extracts of liver and kidney [67,68,69]; then in tissue 
322 culture and given names based upon their hydroxylation activity: 25-hydroxylase, 1-hydroxylase 
323 and 24-hydroxylase. In the early 1990-2005 period all three enzymes were purified, cloned and 
324 expressed in cell culture systems, principally by Canadian group of St-Arnaud [70] as well as the 
325 Japanese groups of Kato S [71], Okuda [72] and Sakaki [73,74] as well as Russell’s group at the 
326 U Texas [75]. The 3 enzymes are now known as CYP2R1, CYP27B1 and CYP24A1. A review of 
327 the CYP field and how these enzymes operate & how they are regulated is provided [66]. A 
328 summary of the history of the signal transduction protein machinery for vitamin D including VDR, 
329 DBP and the various CYPs is provided in Table 2.
330
331 No review of the recent history of vitamin D would be complete without an overview of 
332 how defects in vitamin D metabolism result in human disease. It is now evident that vitamin D 
333 deficiency and rickets are caused by several genetic and acquired errors in vitamin D metabolism 
334 which involve any of the major protein components of the vitamin D machinery described above. 
335 These are compiled into Table 3 where we document the disease name, the component of the 
336 vitamin D machinery affected, as well as the publication first describing it. Besides diseases 
337 involving too little 1,25-(OH)2D3 and resulting in rickets, diseases involving too much 1,25-
338 (OH)2D3 which cause hypercalcemia are also included in Table 3. Most of these diseases involving 
339 a shortage of 1,25-(OH)2D3 are now treated with vitamin D analogs which were developed from 
340 knowledge of the metabolism and biological actions of vitamin D. Currently approved and 
341 marketed vitamin D analogs are listed in Table 4 along with their original publications.  
342
343 Conclusions
344 The history of vitamin D is indeed a rich subject which has already stretched over 350 
345 years and involved the 4 phases described in this review. While the chemical entity, vitamin D 
346 remained unknown for all but 100 of those years, the significant medical consequences of vitamin 
347 D deficiency were evident for the whole of that time. Many physicians, nutritionists, biochemists, 
348 chemists and molecular biologists have worked to elucidate our current knowledge of the nature 
349 of vitamin D in addition to its metabolism, mechanism of action and biological activities. That 
350 knowledge has paid dividends by providing new therapies for the treatment of deficiency and 
351 excess vitamin D action. The field of vitamin D research is arguably one of the highlights of 
352 modern medicine.  
353
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637 Figure 2: Structures of Vitamin D2 and D3. The two versions of vitamin D differ only in their 
638 side chains vitamin D2 possessing an additional C-22-23 double bond and a C-24 methyl group.
639 The modifications make little significant difference in their metabolism or biological actions.
640
641 Figure 3: Metabolism and Mechanism of Action of Vitamin D3. Skin synthesized or dietary 
642 vitamin D3 is converted via a two-step hydroxylation process into the active hormonal form 1,25-
643 (OH)2D3. The hormone binds to the vitamin D receptor (VDR) and regulates serum calcium 
644 (sCa2+) and serum phosphate (sPO4) levels ensuring sufficient minerals for normal cellular activity 
645 around the body including bone. Insufficient vitamin D results in insufficient 1,25-(OH)2D3 and 
646 vitamin deficiency rickets. Circled in red are the proteins in the vitamin D-specific machinery that 
647 when mutated also result in some type of rickets. Circled in blue is the enzyme CYP24A1 that 
648 when mutated results in elevated 1,25-(OH)2D3 and hypercalcemia and/or kidney stones.
649
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Table 1: History of the Discovery of the major metabolites of Vitamins D2 and D3

Metabolite              Tissue Source               Biosynthetic Enzyme                     Biological Role                                   Discovery 
Vitamin D3 Metabolites
25-OH-D3                  Liver                         25-Hydroxylase (CYP2R1)          Main Circulating Metabolite    Blunt et al, 1968 [38]

1,25-(OH)2D3           Kidney (major)         1-Hydroxylase (CYP27B1)         Active Hormonal Form                     Lawson et al, 1969 [39]
        Extra-renal sites   Myrtle et al, 1970 [40]

  Holick et al, 1971 [41]

24,25-(OH)2D3              Kidney (major)         24-Hydroxylase (CYP24A1)            Principal Catabolite   Suda et al, 1970a [48]
        Extra-renal sites               Holick et al, 1972 [49]

25,26-(OH)2D3          Unknown          26-Hydroxylase (?) Catabolite    Suda et al 1970b [50]

25-OH-D3-          Kidney (major)          24-Hydroxylase (CYP24A1)         Presumed Catabolite          Wichmann et al 1979[51]
26,23-lactone           Extra-renal sites

1,24,25-(OH)3D3     Kidney (major)          24-Hydroxylase (CYP24A1)             Unknown    Holick et al, 1974 [52]
        Extra-renal sites       Possible catabolite

Calcitroic Acid        Kidney (major)            24-Hydroxylase (CYP24A1)               Excretory Form                           Esvelt et al, 1981[53]
        Extra-renal sites

Calcioic Acid           Kidney (major)           24-Hydroxylase (CYP24A1)           Excretory Form                          Kaufmann et al 2019 [76]

4,25-(OH)2D3         Liver             General Cytochrome P450                Excretory Form                           Wang et al 2013 [77]
4,25-(OH)2D3       (CYP3A4)    
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
Vitamin D2 Metabolites
25-OH-D2 Liver 25-Hydroxylase (CYP2R1)    Main Circulating Metabolite Suda et al 1969 [45]

1,25-(OH)2D2             Kidney (major) 1-Hydroxylase (CYP27B1)       Active Hormonal Form Jones et al 1975 [46]

24,25-(OH)2D2           Kidney (major) 24-Hydroxylase (CYP24A1)        Principal Catabolite    Jones et al 1980 [47]

1,24,25-(OH)3D2        Kidney (major) 24-Hydroxylase (CYP24A1)          Presumed Catabolite                   Reddy et al 1986 [78]
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
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Table 2: History of the main protein components of the specific* vitamin D signal transduction machinery

Protein                       Abbreviation   Tissue Location or Source          Biological Function                Discovery                         Gene Cloning
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Vitamin D-binding           DBP Liver        Transport of vitamin D        Daiger et al 1975 [64]       Cooke et al 1991 [79]
Globulin & its metabolites

Vitamin D Receptor         VDR      Most tissues      Regulation of       Haussler [1969] [80]          McDonnell et al 1987[56]   
     except liver                  vitamin D-dependent genes    Brumbaugh et al 1975[55]

25-Hydroxylase             CYP2R1                   Liver                              25-hydroxylation of         Cheng et al 2003 [81]          Cheng et al 2004[75]
    Vitamins D2 and D3

1-Hydroxylase           CYP27B1           Kidney (major)           1-hydroxylation of           Fraser et al 1970[42]          St-Arnaud et al 1997[70]
               Extra-renal sites         25-OH-D2 & 25-OH-D3                          Takeyama et al 1997[71]

24-Hydroxylase           CYP24A1          Kidney (major) 24-hydroxylation of       Knutson et al 1972[66]   Ohyama & Okuda 1991[72]
              Extra-renal sites         (& 23- & 26-hydroxylation)

                    25-OH-D2 & 25-OH-D3
   Complete catabolism of vitamin D

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
*The specific vitamin D signal transduction machinery is specialized to transport, activate, mediate the biological effects of & catabolize vitamin D. 
Other cellular proteins play a general role in vitamin D metabolism and action e.g. CYP3A4 but this degrades many other molecules and drugs.
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Table 3: History of the Main Vitamin D-related Genetic and Acquired Human Diseases & Animal Models Generated to Study them

Disease                                Cause                                       Initial  Report                 Animal Model equivalent                     Generated by

Vitamin D Deficiency      Lack of dietary vitamin D         F Glisson 1671[10]        Beagle dog on oatmeal diet                 Mellanby, 1919 [28]
 Rickets                            Lack of skin synthesis of D    Lactating Goat Model                 Steenbock & Black, 1924[30]

Vitamin D Dependency    Genetic defect in CYP27B1     Fraser et al 1972[82]           CYP27B1 null mouse                 Kato S 1999[83]
Rickets Type 1A                        Panda et al 2001[84]

      St-Arnaud R et al 2003[85]

Vitamin D Dependency    Genetic defect in CYP2R1       Cheng et al 2004 [75]          CYP2R1 null mouse                         Zhu et al 2013[86]
Rickets Type 1B

Vitamin D Dependency    Genetic defect in VDR             Rosen et al 1979[87]                    VDR null mouse                    Yoshizawa T et al 1997[89]
Rickets Type 2           Eil et al 1981[88]      Li Y-C et al 1998[90]

Idiopathic Infantile       Genetic defect in CYP24A1       Lightwood 1953 [91]     CYP24A1 null mouse    St-Arnaud et al 2000[93]
Hypercalcemia (IIH)                                                          Schlingmann et al 2011[92]

Chronic Kidney Disease   Loss of Kidney CYP27B1      DeLuca and Avioli 1970[94]         Dog nephrectomy                Rutherford et al 1977[96]
(CKD)                                 enzyme activity                         Brickman et al 1974[95]                   models
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Table 4: History of the Commercially Approved Vitamin D Drugs (Vitamin D analogs) used to treat Rickets and related diseases

Vitamin D Analog          Drug name             Marketed by               Field of Use*                         Initial Report                         Comments 

25-OH-D3                      Calderol Organon                  Vitamin Deficiency    Blunt & DeLuca 1969[97]      First vitamin D metabolite      
              Rayaldee               OPKO Renal            Chronic kidney Disease                                                Licensed by Upjohn, Kalamazoo

1,25-(OH)2D3                 Calcijex            Roche             Vitamin D Dependency Type 1A   Semmler et al 1972[43]    First vitamin D active analog
    Generic                                               Chronic Kidney Disease         

1-OH-D3  One-alpha             Leo Pharma            Vitamin D Deficiency               Holick et al 1973[98]    1-hydroxylated prodrug   
Alfacalcidiol                      Chronic Kidney Disease     Barton et al 1973 [99]  not requiring activation by kidney 

1-OH-D2                     Hectorol             Genzyme/Sanofi        Chronic Kidney Disease            Lam et al 1974[100]            1-hydroxylated prodrug    
Doxercalciferol       Sandoz                                              not requiring activation by kidney   

19-nor-1,25-(OH)2D2   Paricalcitol           Abbott     Chronic kidney Disease      Takahashi F et al 1997[101]    Active “low-calcemic”  
                      vitamin D analog 

Calcipotriol            Daivonex        Leo Pharma Psoriasis               Calverley 1987 [102]            Topical rapidly-metabolized 
side-chain modified 
vitamin D analog  

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------                
*Many of the vitamin D drugs used in Chronic Kidney Disease Stages 3-4 and beyond are used to suppress secondary hyperparathyroidism, as 
well as having a moderate serum calcium-raising activity.
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Figure 1:
Lithograph from 
Glisson’s “de 
Rachitide”

Reproduced from the 
US National Library 
digital collection. 

Page 20 of 22Accepted Manuscript published as EC-21-0594.R1. Accepted for publication: 04-Mar-2022

Copyright © 2022 the authors Downloaded from Bioscientifica.com at 03/05/2022 01:51:02AM
via free access



ANIMAL VERSION PLANT & FUNGAL VERSION 

Cholecalciferol Ergocalciferol

Figure 2: Structures of Vitamin D2 and D3
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DEFECTIVE VITAMIN D METABOLISM or
DEFECTIVE RESPONSE TO HORMONE

RICKETS or HYPERCALCEMIA/RENAL STONES

Figure 3: Metabolism and Mechanism of Action of Vitamin D3
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