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Introduction

Vitamin D deficiency is associated with several adverse health 
outcomes.1 A plethora of health benefits, including a boost in 
longevity with vitamin D replacement, is evident.2 Vitamin D 
has an emerging role in regulating inflammation and chemokine 
production3 as well as an important role in immunomodulation.4 
These anti-inflammatory and anti-infective roles of Vitamin D 
are becoming increasingly important in a variety of skin diseases. 
A modulating effect of Vitamin D on the skin immune system is 
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Evidence exists that vitamin D has a potential antimicrobial 
activity and its deficiency has deleterious effects on general 
well-being and longevity. Vitamin D may reduce the risk of 
infection through multiple mechanisms. Vitamin D boosts 
innate immunity by modulating production of anti-microbial 
peptides (AMPs) and cytokine response. Vitamin D and its 
analogues via these mechanisms are playing an increasing 
role in the management of atopic dermatitis, psoriasis, vitiligo, 
acne and rosacea. Vitamin D may reduce susceptibility to 
infection in patients with atopic dermatitis and the ability to 
regulate local immune and inflammatory responses offers 
exciting potential for understanding and treating chronic 
inflammatory dermatitides. Moreover, B and T cell activation as 
well as boosting the activity of monocytes and macrophages 
also contribute to a potent systemic anti-microbial effect. The 
direct invasion by pathogenic organisms may be minimized 
at sites such as the respiratory tract by enhancing clearance 
of invading organisms. A vitamin D replete state appears 
to benefit most infections, with the possible noteworthy 
exception of Leishmaniasis. Antibiotics remain an expensive 
option and misuse of these agents results in significant 
antibiotic resistance and contributes to escalating health 
care costs. Vitamin D constitutes an inexpensive prophylactic 
option and possibly therapeutic product either by itself or 
as a synergistic agent to traditional antimicrobial agents. 
This review outlines the specific antimicrobial properties of 
vitamin D in combating a wide range of organisms. We discuss 
the possible mechanisms by which vitamin D may have a 
therapeutic role in managing a variety of infections.
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apparent from the neonatal period, with the altered regulatory T 
cell profile persisting to adulthood.5 Vitamin D and its analogues 
may have effects on, melanocytes, sebocytes and keratinocytes 
and offer an exciting option for treating many chronic inflam-
matory dermatitides.6 Biggs et al.7 demonstrated that vitamin D 
dependent induction of interleukin-10 by mast cells could con-
tribute to the mast cell’s ability to suppress cutaneous inflamma-
tion. In addition, vitamin D by modulating T cell profiles and 
production of antimicrobial peptides in the skin can potentially 
improve cutaneous inflammatory and vascular response as well as 
reduce secondary skin infection.8

Vitamin D may also improve survival in acute illness by 
boosting innate immunity.9 Vitamin D appears to have systemic 
antimicrobial effects10 that may be crucial in a variety of both 
acute and chronic illness. The current use of antimicrobials in 
the United States costs billions of dollars. Moreover, the over-
use of antibiotics persists despite many efforts to address this 
problem and contributes to resistant organisms such as methicil-
lin resistant staphylococcus aureus.11 Growing expenditures on 
prescription drugs represent a major challenge to many health 
care systems. Vitamin D use could potentially reduce inappropri-
ate antibiotic prescription and boost therapeutic response when 
combined with appropriate antibiotic use. We review the possible 
mechanisms by which Vitamin D may modulate the antimicro-
bial response.

Vitamin D as an Immunomodulatory  
and Antimicrobial Agent

Vitamin (1,25-D
3
) acts as an immune system modulator.12 Nearly 

all cells display a specific vitamin D receptor (VDR), including 
B and T lymphocytes (both resting and activated), monocytes 
and dendritic cells.13 Vitamin D exerts its immunomodulatory 
activity on both mononuclear and polynuclear cell lines through 
its effects on the VDR.14 Vitamin D tends to favor a mononu-
clear phenotype, increasing VDR expression on monocytes and 
macrophages.13,15 Circulating vitamin D levels have a direct influ-
ence on macrophages, increase their “oxidative burst” potential 
(maturation and production of cytokines, acid phosphatase and 
hydrogen peroxide),16 and prevent excessive expression of inflam-
matory cytokines. Vitamin D also facilitates neutrophil motility 
and phagocytic function.17

Vitamin D may improve outcomes by reducing both local 
and systemic inflammatory responses as a result of modulating 



www.landesbioscience.com	 Dermato-Endocrinology	 221

 review REVIEW

sites.36 Vitamin D deficiency may also predispose patients to 
hypocalcemia, which impairs normal lymphocyte and neutro-
phil function.37

Antimicrobial Efficacy Against Different Infective 
Agents

Viruses. Acute lower respiratory infections are one of the 
commonest reasons for hospital emergency department presenta-
tions, hospitalization and intensive care unit admissions among 
children.38 Evidence exists that vitamin D may have a protec-
tive role in influenza16,39 and other viral diseases, such as the risk 
of developing acquired immunodeficiency syndrome (AIDS) in 
human immunodeficiency virus (HIV),40 hepatitis,41 Avian flu,42 
and other viral infections.

Studies dating back to the 1940s have associated a diet poor in 
vitamin D with susceptibility to experimental influenza viruses in 
mice.43 Influenza epidemics in North America and Europe gener-
ally reach peaks during December through March, the months 
during which ultraviolet-B (UVB) radiation exposure and serum 
levels of 25(OH)D are lowest in the population.44 Epidemics of 
influenza peak in the month after the winter solstice45 and have 
greater clinical severity with less sunlight.16 Low vitamin D levels 
may reduce AMP synthesis, which then is less likely to impede 
the influenza virus.16 A randomized controlled trial involving 
Japanese schoolchildren found a relative risk of influenza of 0.36 
in those taking 1,200 IU/day compared with those taking 200 
IU/day.39 This result was found to be related to influenza type A, 
with no effect for type B.

Sabetta et al. demonstrated that maintenance of a vitamin D 
serum concentration of 38 ng/mL or higher should significantly 
reduce the incidence of acute viral respiratory tract infections, 
including influenza, at least during the fall and winter in tem-
perate zones.46 Similarly, variations in vitamin D production 
might explain the seasonality of childhood respiratory infections 
in Hawaii.47 During the 1918–1919 influenza pandemic, in the 
United States, an inverse correlation emerged between the case 
fatality rates and the mean vitamin D status of the population 
which was represented by solar UVB doses.48

In Indian children younger than 5 years, subclinical vitamin 
D deficiency was a significant risk factor for severe acute lower 
respiratory tract infections.49 Corroborative evidence has emerged 
in a study in which 94 children received vitamin D supplemen-
tation and were noted to have a lower incidence of respiratory 
tract infections from autumn through spring of the following 
year.50 The serum vitamin D

3
-binding protein (Gc), which B-cell 

membranes constitutively express in association with membrane 
immunoglobulin, could be involved in cell activation.51 It is the 
precursor for the principal macrophage-activating factor (MAF) 
and is reduced in all patients infected with the influenza virus. 
Sera from these patients contain α-N-acetylgalactosaminidase 
(Nagalase) that deglycosylates Gc protein, preventing it from con-
verting to MAF, possibly contributing to immunosuppression.52

After the outbreaks of H1N1 influenza in 2009, Edlich et al.53 
strongly recommended that all health care workers and patients be 
tested and treated for vitamin D deficiency to prevent exacerbation 

cytokine responses and reducing Toll-like receptor (TLR) acti-
vation.18 Studies in mice suggest that blocking TLR9 may have 
use in treating human sepsis.19 Vitamin D also modulates the 
immune system by direct effects on T-cell activation and on the 
phenotype and function of antigen-presenting cells, especially 
dendritic cells.20 Vitamin 1,25-D

3
 inhibits proliferation of T 

helper 1(Th1) cells [consequently impairing production of IL-2, 
tumor necrosis factor α and interferon (IFN)], as well as T helper 
17 (Th17) cells, skewing cytokine production toward a T helper 
2 (Th2) phenotype.21

A major component of the antimicrobial action of Vitamin 
D is through the production of peptides which have antimicro-
bial as well as anti-endotoxin activity. Vitamin D stimulates the 
expression of potent antimicrobial peptides, such as cathelicidin 
and β defensin 2,22 which exist in neutrophils, monocytes, nat-
ural killer (NK) cells and epithelial cells lining the respiratory 
tract.23 Macrophages, lymphocytes and monocytes have VDRs 
that, with 25(OH)D stimulation, increase the expression of these 
antimicrobial peptides.24,25 Jeng et al.18 noted a positive relation-
ship between vitamin D levels and cathelicidin levels in acutely 
ill patients. Grant proposed this relationship on the basis of a syn-
thesis of the epidemiological studies of septicemia in the United 
States.26

Cathelicidin is effective against gram-positive and gram-neg-
ative bacteria, fungi and mycobacteria at a variety of pathogen 
entry sites, including the skin and the mucosal linings of the 
respiratory and gastrointestinal systems.22 Patients with 25(OH)
D levels less than 20 ng/mL may be unable to fully express cathe-
licidin,18 which could be associated with increased susceptibility 
to nosocomial infections such as pneumonia, sepsis and central 
line infections.21

Another antimicrobial peptide, human beta-defensin-2 
(HBD)-2, may have special utility in multidrug resistant 
microbes from in vitro studies,27 although its overall role is less 
clearly defined. In lesions observed in psoriasis and atopic derma-
titis, vitamin D promoted increased cathelicidin28 but decreased 
beta-defensin-2 production.29 This enhanced antimicrobial pep-
tide production may improve skin lesions in psoriasis and atopic 
dermatitis.29 The ability of vitamin D analogs to alter antimi-
crobial peptide expression in psoriatic lesions extends our under-
standing of dermatologic therapies.30

Human beta-defensin-3 (HBD)-3 is an antimicrobial pep-
tide that exhibits a broad spectrum antimicrobial activity against 
gram-positive/negative bacteria and fungi.31 It is possible that 
(HBD)-3 maybe more relevant than (HBD)-2 as shown in the 
severity of staphylococcal aureus skin infections.32 Augmentation 
of (HBD)-3 production in keratinocytes by antifungal agents 
such as Itraconazole may potentiate cutaneous defense against 
infection.33 A deficiency of antimicrobial peptide production may 
contribute to the susceptibility to staphylococcus aureus skin 
infections in patients with atopic dermatitis.8 Moreover, abnor-
mal processing of cathelicidin peptides may contribute to cutane-
ous inflammation and vascular response seen in Rosacea.34

In addition to antimicrobial and immune benefits, anti-
microbial peptides may contribute to host defense through 
wound repair35 and clearance of bacteria at various barrier 
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However, under certain circumstances, the vitamin D pathway 
may be implicated in promoting disease activity. Nevado et al. used 
U937 cells as a model for mononuclear cells (a target for HIV) 
and demonstrated that VDR and its ligand 1,25-D

3
 have a role in 

transactivation of the long terminal repeat sequence of HIV type 
1, which is a crucial element in viral replication.66 The exact nature 
of this influence has yet to be fully elucidated. HIV entry into 
monocytes depends on chemokine receptor CCR5,67 and vitamin 
D has a dual role in potentially blocking this step in the infectious 
pathway. Promoting a predominantly Th2 response will induce 
release of cytokines (such as IL-13) known to downregulate CCR5 
expression.68 Vitamin D also regulates production of RANTES,3 
a natural ligand of CCR5 whose binding helps block viral entry.

Highly active antiretroviral therapy may be linked to signifi-
cant changes in vitamin D status. Median 25(OH)D levels were 
significantly lower in white nonnucleoside reverse transcriptase 
inhibitor-treated patients than in white patients treated with pro-
tease inhibitors.63 Moreover, nonnucleoside reverse transcriptase 
inhibitor and protease inhibitor treatment puts patients at risk of 
elevated parathyroid hormone levels,63 as shown with tenofovir-
linked hyperparathyroidism, which is closely linked to vitamin D 
deficiency.69 However, vitamin D status did not affect CD4 cell 
recovery after initiation of highly active antiretroviral therapy.63

Host defense against human T-lymphotropic virus type 1 
(HTLV-1) hinges on an effective Th1 response. Vitamin D seems 
to limit the magnitude of Th1 activation, providing a more effec-
tively orchestrated response in a similar manner to tuberculosis 
(as discussed later). In patients infected with HTLV-1, a greater 
risk of developing tropical spastic paraparesis was associated with 
the ApaI polymorphism of VDR (although clinical course was 
unaltered).70

The potential benefit of a vitamin D-replete state against hep-
atitis is an interesting recent development.41 Chronicity of hepati-
tis B infection is also influenced by mutations in the VDR gene, 
with polymorphisms being associated with higher viral load, 
disease progression and severity.71 Of note, the t allele (resulting 
from a dimorphism at position 352) is associated with enhanced 
Th1 cellular immunity and promotes more efficient clearance 
of several viral infections, including hepatitis B and dengue 
virus.72,73 A potential benefit of vitamin D on the hepatitis C 
virus (HCV) is emerging; however, the data are preliminary. One 
study in patients with HCV demonstrated that vitamin D

2
 (but 

not D
3
) inhibits viral RNA replication, supposedly by inducing 

oxidative stress in a manner similar to the action of cyclospo-
rine.74 Genotype 1 chronic HCV patients have low 25(OH)D 
serum levels, thus placing them at risk of severe fibrosis and low 
sustained viral response to IFN.75 Another study also reproduced 
these findings,76 where vitamin D supplementation improved the 
probability of achieving a sustained virological response after 
antiviral treatment with IFNα and ribavirin. Further, vitamin 
D-binding protein was among the three prominent candidate 
biomarkers of liver fibrosis, where vitamin D-binding protein lev-
els were higher in the normal liver/mild fibrosis stage and lower 
in the advanced stage. Thus, vitamin D-binding protein level 
is potentially a way to predict the stage of liver fibrosis without 
biopsy.77 Vitamin D is linked not only to liver fibrosis but also 

of respiratory infections. Vitamin D also reduces the production 
of proinflammatory cytokines, which may reduce the risk of 
cytokine storm in H1N1 infection.48

Other respiratory viruses such as respiratory syncytial virus 
(RSV) and parainfluenza 1 and 2 viruses present with a similar 
seasonal pattern,54 although the incidence of RSV seems to relate 
more to humidity and temperature than to UV radiation expo-
sure.55 Vitamin D appears to decrease the inflammatory response 
to RSV infections in airway epithelium without jeopardizing 
viral clearance.56

These findings suggest that the immunomodulatory proper-
ties of vitamin D influence acute lower respiratory tract disease 
severity38 and may thus protect against asthma. A recent random-
ized controlled trial involving Japanese students found a reduced 
incidence of asthma in those taking vitamin D.39 Moreover, in 
children with asthma, decreased vitamin D status is associated 
with increased use of corticosteroids.57 Viral infections also con-
stitute a major cause of recurrent otitis media. In a group of 16 
young children undergoing tympanostomy tubes, suboptimal 
25(OH)D levels were noted: 50% were deficient and another 
31% were in the insufficient range.58

Individuals with 25(OH)D levels less than 10 ng/mL had 
55% higher probability of a recent upper respiratory infection 
than individuals with levels greater than 30 ng/mL.23 In elderly 
patients, this concern is of greater magnitude; levels will need 
to be sufficient to compensate for an age-dependent decrease in 
immune function. Consuming 800 IU of oral vitamin D

3
 daily 

was insufficient for prevention of infection in the RECORD 
trial.59

One cannot extrapolate conclusions from studies with the 
influenza virus to other respiratory viruses. For example, AMPs 
do not inactivate rhinoviruses because these viruses lack a lipo-
protein envelope, which appears to be prerequisite for the antimi-
crobial activity of most AMPs.60 Epstein-Barr virus transforms 
B lymphocytes into immortalized lymphoblasts. A VDR protein 
was found to be a binding partner of Epstein-Barr virus nuclear 
antigen 3 (EBNA-3), a member of the EBNA-3-protein family 
that can regulate transcription of cellular and viral genes. This 
latter protein blocks the activation of VDR-dependent genes 
and protects lymphoblast cell lines against vitamin D

3
-induced 

growth arrest and apoptosis.61

Despite a complex relationship that remains to be fully eluci-
dated, vitamin D appears to contribute in defense against HIV. 
The role is based on both direct action (by promoting release of 
antiviral elements such as β-defensin 2 and cathelicidin),62 and 
indirect effects through VDR actions. Polymorphisms in the 
structure of the VDR gene directly affect host susceptibility to 
HIV infection, CD4 counts, immunological hyperactivity and 
rapidity of disease progression to full-blown AIDS.40,63 The G-A-
T-G-L haplotype of VDR (which confers a diminished efficacy 
of the vitamin D pathway) protects against transmission of HIV 
type 1 (possibly secondary to diminished antiviral chemokine 
release and an unbalanced Th2 response),40 whereas in AIDS 
patients, the VDR BsmI BB and FokI heterozygosities are asso-
ciated with a more accelerated CD4 drop and faster progression 
to AIDS.64,65
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cell production of IFNγ and IL-12,95 modulating the immune 
response against M. tuberculosis, possibly reducing the risk of 
cytokine storm.

The effects of vitamin D on other mycobacterial dis-
eases, such as leprosy, are also being studied. The presence of 
1-α-hydroxylase in foamy macrophages (characteristic of gran-
ulomatous disease) may result in greater circulating levels of 
1,25-D

3
 and subsequent hypercalcemia. Whether these meta-

bolic changes alter disease course is unknown. More concrete 
evidence has emerged linking VDR polymorphisms with host 
susceptibility. The t allele (already highlighted as a marker of 
prominent Th1 immunity) has been linked with greater inci-
dence of tuberculoid leprosy.96 In a highly endemic region 
of Brazil, the combination of the tt genotype and a negative 
Mitsuda reaction was associated with an incidence of leprosy 
13 times higher than that in control subjects with a positive 
Mitsuda test.97

In vitro studies proved vitamin D
3
 has inhibitory activity on 

strains of Staphylococcus aureus, Streptococcus pyogenes, Klebsiella 
pneumoniae, Escherichia coli (E. coli) and other bacteria. In the 
presence of 50,000–90,000 IU/mL of vitamin D

3
, the organ-

isms were killed or demonstrated marked growth inhibition.98 
Gram-positive bacteria, invasive pneumococcal disease, menin-
gococcal disease and group A streptococcal disease are more 
common when vitamin D levels are low, raising the possibility 
that pharmacological doses of vitamin D could be an effective 
adjuvant therapy.99

Excess wintertime mortality related to pneumococcal pneu-
monia has been noted for more than a century. The major pre-
dictor of invasive pneumococcal disease in Philadelphia was 
extended periods of low UV radiation, which may explain the 
observed wintertime seasonality. The virulence of the pathogen 
and the efficacy of host immune function boosted by 1,25-D

3
 

may determine the outcomes of invasive disease.100 A double-
blind individually randomized placebo-controlled trial involv-
ing young children in an inner-city hospital in Kabul showed 
that the risk of a repeat episode of pneumonia within 90 days of 
supplementation of oral 100,000 IU of vitamin D

3
 was lower in 

the intervention than in the placebo group.101

Bahr et al. examined group A streptococcal infections and 
found a striking association between vitamin D-binding pro-
tein (Gc2) and rheumatic fever in a homogeneous Arab popula-
tion.51 Vitamin D plays an important role in mediating immune 
function of the skin through several pathways, including the 
enhanced release of AMPs.102 Vitamin D deficiency is associated 
with an increased risk of methicillin-resistant Staphylococcus 
aureus nasal carriage.103 Similar findings suggest that VDR 
polymorphisms may be associated with nasal carriage of S. 
aureus in individuals with type 1 diabetes mellitus.104 However, 
others found no association between VDR gene variation and 
S. aureus nasal carriage.105

Moreover, vitamin D deficiency has been linked to adverse 
and more costly outcomes in veterans with Clostridium difficile 
and methicillin-sensitive S. aureus infections.106 Animal stud-
ies also confirm a potential beneficial role for vitamin D treat-
ment. In the turkey osteomyelitis complex, vitamin D treatment 

to liver cirrhosis. A significant correlation exists between VDR 
genetic polymorphisms and the occurrence of hepatocellular car-
cinoma in patients with liver cirrhosis; this association is even 
more prominent in alcoholic patients.78

Deficient production of CCR5 has been linked to an increased 
susceptibility to HCV infection,79 supporting a potential delete-
rious role for vitamin D deficiency by favoring host infection 
through the aforementioned Th2 influence on CCR5.

Bacteria. Recent discoveries have revealed the importance of 
the vitamin D-dependent generation of antimicrobial peptides 
in human host defense against Mycobacterium tuberculosis.80 
Low vitamin D levels were associated with a fivefold-increased 
risk for progression to tuberculosis.81 The influence of vitamin 
D on tuberculosis can be traced back to the predrug era, when 
exposure to sunlight was considered an important adjuvant 
treatment modality. Yesudian et al. hypothesized that high-risk 
populations latently infected with the organism would develop 
full-fledged disease upon migrating from an area with high sun 
exposure to areas with diminished sunlight.82 Since the early 19th 
century, both environmental (i.e., sunlight) and dietary sources 
(cod liver oil) of vitamin D have been identified as treatments for 
tuberculosis.10

More than one study has associated polymorphisms in VDR 
with an increased susceptibility to tuberculosis,83,84 and vitamin 
D deficiency has been linked to a more severe form of the dis-
ease.85 The lower serum levels observed in African Americans 
may account for deficient production of cathelicidin and a 
greater susceptibility to infection.86 Cathelicidin is required for 
the 1,25-D

3
-triggered antimicrobial activity against intracellular  

M. tuberculosis.86 M. tuberculosis activates TLR2/1, enhanc-
ing 1,25-D

3
 production and VDR expression, with subsequent 

release of cathelicidin by monocytes.87

Vitamin D limits mycobacterial growth within macrophages 
and monocytes and, until recently, the precise mechanism gov-
erning this activity was subject to debate.88,89 Murine models sug-
gest that 1,25(OH)2D-mediated induction of nitric oxide release 
by macrophage-like cell lines is a fundamental element in host 
defense, but these findings may not apply to human subjects.90 
Vitamin 1,25(OH)2D may play an important role in limiting the 
pathological process in tuberculosis by downregulating the levels 
of matrix metalloproteinases (MMPs) and upregulating the levels 
of tissue inhibitor of MMP-1.91

A variety of other mechanisms have also been postulated. 
Autophagy also plays a crucial role in antimycobacterial resis-
tance92 and contributes to immune surveillance of intracellular 
pathogens and vaccine efficacy. Vitamin D

3
 contributes to host 

immune responses against M. tuberculosis through cathelicidin.93 
Yuk et al.94 have outlined how vitamin D induces autophagy and 
mediates co-localization of M. tuberculosis and AMPs within an 
autophagolysosome, leading to killing of the bacterium. Similarly, 
TLR2/1 activation leads to vitamin D

3
-dependent antimycobac-

terial activities. TLR2/1/CD14 stimulation by mycobacterial 
lipoprotein LpqH can activate antibacterial autophagy through 
activating VDR signaling and inducing cathelicidin.93

Analogously to HTLV-1, 1,25-D
3
 induces important cyto-

kine downregulation activity and actually blocks mononuclear 
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the intensive care unit.18 The epidemiology of septicemia in 
the United States and the variations of solar UVB, as well as 
the effects of vitamin D, support the hypothesis that both play 
important roles in reducing the risk of septicemia.26 The risk of 
diseases comorbid with septicemia are generally inversely cor-
related with serum 25(OH)D levels.26 Grant also demonstrated 
that vitamin D supplementation of mother and infant can 
reduce the risk of sepsis in infants123 and neonates.124 Activation 
of TLR4, the receptor for gram-negative bacteria’s outer mem-
brane lipopolysaccharide or endotoxin, may play a potential role 
in determining outcomes. Vitamin D, through its modulation, 
may have a role as adjunctive therapy in severe sepsis and septic 
shock.122 In veterans admitted to the intensive care unit, higher 
mortality and a longer stay were significantly linked to lower vita-
min D status.125 A total of 17% of the intensive care patients in 
one study had undetectable levels of vitamin D,126 which may 
predispose to hypocalcemia. Zaloga et al.127 found that 20% of 
critically ill patients with bacterial sepsis had hypocalcemia and 
that their mortality rate was significantly higher (50%) than that 
of normocalcemic patients with sepsis (29%).

Protozoa. Leishmania major is an obligatory intracellular 
organism residing within macrophages. Effective clearance will 
depend on appropriate macrophage activation (which occurs 
through IFNγ release by Th1 and NK cells) and production of 
nitric oxide.128 The presence of 1,25-D

3
 disrupts this pathway, as 

IFNγ secretion is blocked, impairing macrophage activation.129 
Similarly, host defense against Toxoplasma gondii (T. gondii) relies 
on a Th1 cytokine profile response dominated by IFNγ and IL-2 
production.130 The potential downregulation of this response by 
vitamin D can prove problematic in toxoplasmosis. Treatment 
with vitamin D dose-dependently inhibits both in vivo and in 
vitro growth of T. gondii, possibly by limiting tachyzoite prolif-
eration within the parasitophorous vacuole because of activity at 
a cellular level.131 However, no difference occurred in the total 
number of infected cells regardless of the presence of vitamin D, 
perhaps refuting a role in cell invasion. Interestingly, vitamin D 
may be linked to increased mortality in mice infected with toxo-
plasmosis, presumably because of its downregulation of the Th1 
cytokine response.132 This finding suggests a delicate balance 
in overall immune response against this organism, and further 
studies would need to be done to establish the role of vitamin D 
among other variables in determining outcomes.

Two other parasitic infections reportedly benefit from adequate 
circulating vitamin D levels. A murine model demonstrated that 
intraperitoneal injection with vitamin D conferred protection 
against inoculation with trypomastigotes of Trypanosoma cruzi, 
with histopathology revealing diminished tissue inflammation 
and parasitism.133 The intraerythrocytic forms of Plasmodium 
falciparum (P. falciparum) produce triacylglycerols through 
enhanced expression of diacylglycerol acyltransferase, an essen-
tial step in sustaining their proliferation within erythrocytes.134 
Biosynthetic activity is particularly enhanced at the trophozoite 
and schizont stages, which are precisely the two forms at which 
higher serum levels of 25-D

3
 and 1,25-D

3
 have been demon-

strated to hinder growth of P. falciparum.135 It has been proposed 
that the activity of vitamin D resides in altering phospholipid 

resulted in significantly lower isolation of bacteria from tissues 
and reduced mortality.107

The Tt genotype of VDR is associated with periodontal 
disease and may mediate this through its effects on the gram-
positive bacteria that constitute the oral flora.108 Both dental 
caries and periodontal disease are caused largely by Streptococcus 
mutans.109 Although eating refined carbohydrates and poor den-
tal hygiene contribute to dental caries, vitamin D can reduce the 
risk of caries by inducing production of cathelicidin and defen-
sins, which have antibacterial properties.10 A cross-sectional study 
from the Third National Health and Nutrition Examination 
Survey (NHANES III) in the United States found a significant 
inverse correlation between periodontal disease (PD) and serum 
25(OH)D concentrations.110

A study of British Bangladeshi adults, free of known diabetes 
or major illness, showed that a year of modest vitamin D supple-
mentation decreased serum circulating MMP-9 levels by 69%.111 
Two small randomized controlled trials of vitamin D and calcium 
supplementation and risk of PD revealed a higher rate of PD in 
the nontaker groups.112,113 Thus, vitamin D evidently reduces the 
risk of PD since it largely satisfied the criteria for causality in a 
biological system, as outlined by Grant and Boucher.114

Vitamin D-induced downregulation of the cytokine response 
may not always be associated with optimal host defense. The Th1 
cytokine profile is vital for clearance of certain organisms and 
ancillary immune activity, and a limiting effect on this cytokine 
profile may result in reduced chances for overcoming infections. 
A study on cultured macrophages treated with 1,25-D

3
 demon-

strated deficient activity against Listeria spp.115 This effect may 
be due to inhibition of IFNγ activation of macrophages, which 
would preclude reactive oxygen formation and thus effective bac-
tericidal activity.115 However, Bruce et al.116 indicated that clear-
ance of Listeria monocytogenes was delayed in the absence of the 
VDR.

Many examples document the benefits of having an opti-
mal vitamin D level in gram-negative bacteria. Treatment with 
25(OH)D protected 3A cells of the placenta against cell death 
after infection with E. coli.117 Through enhancing AMP expres-
sion, vitamin D may be a part of the defense against infections 
such as shigellosis, which reduce the endogenous expression of 
AMPs, resulting in serious infections.118 Vitamin D deficiency 
predisposes mice to colitis by means of dysregulated colonic 
antimicrobial activity and impaired homeostasis of enteric bac-
teria.119 In the same context, VDR activation reduces bacterial-
induced intestinal NFκB activation and attenuates response to 
infection.120 Therefore, it is an important contributor to intes-
tinal homeostasis and host protection from bacterial invasion 
and infection.120 Treatment with oral active vitamin D may be 
associated with a lower risk of peritonitis in peritoneal dialysis 
patients.121

Despite a decrease in mortality in the last decade, sepsis 
remains the tenth-leading cause of death in western countries122 
and one of the commonest causes of death in intensive care units. 
Mortality in adult intensive care units may be partially linked 
to severe systemic inflammatory responses and sepsis.18 Vitamin 
D status may determine AMP levels in patients with sepsis in 
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circulating NK cells, which may contribute to host defense 
against fungal organisms37—subsequent findings confirming 
similar results have been scarce. Thus, more studies are needed to 
support vitamin D as an adjuvant treatment modality for fungal 
infection.

For Candida albicans, patients with end-organ resistance to 
1,25-D

3
 all had relative decrease in neutrophil fungicidal activ-

ity.137 In animal studies, Cantorna et al.138 demonstrated that 
1,25-D

3
 may reduce the prevalence of opportunistic infections 

such as candidiasis.

metabolism and precluding this crucial step. It is, however, not 
an easy hypothesis to sustain, given that erythrocytes have not 
been shown to have receptors for 25-D

3
135 therefore, a direct cel-

lular effect is highly unlikely.
Fungi. The role of vitamin D in combating fungal infections 

dates back to a case series published in 1954, in which three 
patients with severe refractory chromoblastomycosis showed 
marked improvement in their skin lesions after receiving repeated 
treatments with 600,000 IU of calciferol.136 Despite these early 
promising results—plus the ability of vitamin D to increase 

Figure 1. Potential antimicrobial mechanisms of vitamin D.
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that in addition to low vitamin D levels, excessive 25(OH)D 
levels may also increase the risk of tuberculosis.144 A recently 
published randomized controlled trial demonstrated that the 
administration of four doses of 2.5 mg vitamin D(3) increased 
serum 25-hydroxyvitamin D concentrations in patients receiv-
ing intensive-phase treatment for pulmonary tuberculosis. 
Vitamin D significantly hastened sputum culture conversion in 
participants with the tt genotype of the TaqI vitamin D receptor 
polymorphism.145

Considering the plethora of general benefits that an adequate 
vitamin D state confers, as well as potential antimicrobial ben-
efits, checking vitamin D status and maintaining adequate 
25(OH)D levels seems prudent. It appears likely that VDR poly-
morphisms determine tissue responses to vitamin D.146 Some 
individuals may need much larger replacement doses than oth-
ers, emphasizing the need to customize vitamin D replacement 
through monitoring. While optimal Vitamin D levels are not 
clearly defined, there is evidence that maintaining a vitamin D 
level 38 ng/ml or higher should significantly reduce the incidence 
of upper respiratory infection.46 In addition, Grant has proposed 
a significant reduction in mortality with a vitamin D level of 45 
ng/ml.147 As such we believe it is reasonable to aim for 25(OH)D 
levels of about 40–45 ng/ml in patients.46

Vitamin D is emerging as an important and cost-effective 
option in the therapeutic armamentarium in reducing many 
infections either as a sole agent or as an adjunct to current anti-
microbial agents.
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Murray et al. described a patient with disseminated histoplas-
mosis and adrenal insufficiency treated with vitamin D and cal-
cium supplementations.139 The patient was hypercalcemic (due to 
the granulomatous nature of the disease), and vitamin D supple-
ments exacerbated this condition. Despite aggressive manage-
ment, the patient later died. In light of this, avoiding vitamin 
D supplementation in invasive granulomatous fungal infections 
would be prudent, since it may induce or aggravate hypercalce-
mia and hypercalcemia may lead to impaired monocyte and neu-
trophil activity.140

Parasites. A remarkable lack of data exists on the effect of 
vitamin D in parasitic infections. Chowdhury et al. showed 
that media enriched with vitamin D

3
 can exert a toxic effect 

on Hymenolepis microstoma, leading to degenerative changes in 
the worm.141 Similarly, a prior study reported that a diet lacking 
in vitamins A, D

3
 and E would predispose to an increase in the 

size of Hymenolepis diminuta due to host intestinal paralysis and 
worm migration to a position more favorable for growth.142

An 11-month trial in Kenyan children living in an endemic 
area for helminth infections yields some useful data. Subjects 
receiving supplements (consisting of 15 micronutrients, includ-
ing the equivalent of 200 IU daily of vitamin D

3
) showed a 

decrease of borderline significance in the rate of reinfection 
with Schistosoma mansoni but no benefit with regards to rates of 
infection with Ascaris lumbricoides, Trichuris trichiura or hook-
worms.143 The relatively low dose of vitamin D

3
 supplementation 

given hinders drawing definitive conclusions.

Conclusions

Abundant evidence is surfacing with regard to the role of vitamin 
D in modulating the immune and antimicrobial response. Figure 1 
summarizes the potential antimicrobial mechanisms of vitamin 
D. Vitamin D also has diverse and potent local and systemic 
activities such as enhanced production of AMPs, which generally 
appears to favor the host in curtailing infection. Leishmaniasis 
may be the possible exception to this beneficence in that vitamin 
D may actually favor the invading organism.

Much of the data supporting vitamin D has come from 
laboratory or epidemiologic settings. We urgently need clinical 
trials to confirm the efficacy of vitamin D as a potent antimi-
crobial and immunomodulating agent. Recent work suggest 
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