Series editors: Donald Y. M. Leung, MD, PhD, and Dennis K. Ledford, MD

Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity?

Ngoc P. Ly, MD, MPH,^a Augusto Litonjua, MD, MPH,^b Diane R. Gold, MD, MPH,^b and Juan C. Celedón, MD, DrPH^c San Francisco, Calif, Boston, Mass, and Pittsburgh, Pa

INFORMATION FOR CATEGORY 1 CME CREDIT

Credit can now be obtained, free for a limited time, by reading the review articles in this issue. Please note the following instructions.

Method of Physician Participation in Learning Process: The core material for these activities can be read in this issue of the Journal or online at the JACI Web site: www.jacionline.org. The accompanying tests may only be submitted online at www.jacionline.org. Fax or other copies will not be accepted.

Date of Original Release: May 2011. Credit may be obtained for these courses until April 30, 2013.

Copyright Statement: Copyright © 2011-2013. All rights reserved.

Overall Purpose/Goal: To provide excellent reviews on key aspects of allergic disease to those who research, treat, or manage allergic disease.

Target Audience: Physicians and researchers within the field of allergic disease.

Accreditation/Provider Statements and Credit Designation: The American Academy of Allergy, Asthma & Immunology (AAAAI) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The AAAAI designates these educational activities for a maximum of 1 *AMA PRA Category 1 Credit*TM. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Current evidence supports a role for gut colonization in promoting and maintaining a balanced immune response in early life. An altered or less diverse gut microbiota composition has been associated with atopic diseases, obesity, or both. Moreover, certain gut microbial strains have been shown to inhibit or attenuate immune responses associated with chronic inflammation in experimental models. However, there has been no fully adequate longitudinal study of the relation between the neonatal gut microbiota and the development of allergic diseases (eg, atopic asthma) and obesity. The emergence of promising experimental studies has led to several clinical trials

Available online March 21, 2011.

0091-6749/\$36.00

doi:10.1016/j.jaci.2011.02.015

List of Design Committee Members: Ngoc P. Ly, MD, MPH, Augusto Litonjua, MD, MPH, Diane R. Gold, MD, MPH, and Juan C. Celedón, MD, DrPH

Activity Objectives

- To understand the effect of early exposures, including delivery method, breast-feeding, prematurity, and early antibiotic use, on the development of gut microbiota.
- 2. To understand how gut microbiota alter local cytokine expression and $T_{\rm H}1/T_{\rm H}2$ balance and affect the development of diseases such as asthma and obesity.
- 3. To understand how dietary interventions, including probiotics and vitamin D, alter gut microbiota and influence disease.

Recognition of Commercial Support: This CME activity has not received external commercial support.

Disclosure of Significant Relationships with Relevant Commercial

Companies/Organizations: A. Litonjua has received author royalties from UpToDate, Inc, and has received research support from the National Institutes of Health. D. R. Gold has received research support from the National Institutes of Health and the Environmental Protection Agency. The rest of the authors have declared that they have no conflict of interest.

of probiotics (live bacteria given orally that allow for intestinal colonization) in human subjects. Probiotic trials thus far have failed to show a consistent preventive or therapeutic effect on asthma or obesity. Previous trials of probiotics have been limited by small sample size, short duration of follow-up, or lack of state-of-the art analyses of the gut microbiota. Finally, there is emerging evidence that the vitamin D pathway might be important in gut homeostasis and in signaling between the microbiota, additional research is needed before we can confidently establish whether its manipulation in early life can prevent or treat asthma, obesity, or both. (J Allergy Clin Immunol 2011;127:1087-94.)

Key words: Microbiota, asthma, obesity, allergic, eczema, vitamin D, probiotics, cytokines

Discuss this article on the JACI Journal Club blog: www.jacionline.blogspot.com.

Asthma and obesity are 2 major public health problems in industrialized nations, such as the United States.¹⁻³ Both diseases are characterized by a state of chronic inflammation and have been associated in multiple studies of children and adults.⁴⁻¹⁰

From ^athe Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of California San Francisco; ^bthe Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston; and ^cthe Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine.

Received for publication December 7, 2010; revised February 3, 2011; accepted for publication February 3, 2011.

Reprint requests: Ngoc Ly, MD, MPH, 521 Parnassus Ave, C344, San Francisco, CA 94143-0632. E-mail: lyn@peds.ucsf.edu.

^{© 2011} American Academy of Allergy, Asthma & Immunology

Abbreviations used	
Treg: Regulatory T	
VDR: Vitamin D receptor	

Potential explanations for the link between obesity and asthma include pleiotropic genetic effects, ^{5,11,12} altered lung mechanics, ¹³ resistance to treatment with inhaled corticosteroids, ¹⁴⁻¹⁶ diet and vitamin D deficiency, ¹⁷⁻²¹ coexisting morbidity (eg, gastroesophageal reflux), and reduced or altered microbial exposure in early life (see below).

The largest and earliest source of microbial exposure in human subjects comes from the intestinal tract. The gut contains a large and diverse population of microbes that is, quantitatively, the most important postnatal source of microbial stimulation of the immune system.^{22,23} The initial gut composition can significantly influence immune system development.²⁴ Hence disruption of this process early on in life at a time of dynamic changes^{25,26} in the infant's gut might have long-term health effects. Both asthma²⁷ and obesity²⁸⁻³⁰ often begin in early childhood, when the gut microbiota is primarily developed. Recent studies in animal models and in human subjects have found a relation among gut microbiota, atopic diseases (eczema, allergic rhinitis, and asthma) (Table I),³¹⁻³⁸ and obesity.³⁹⁻⁴³ Early-life factors (ie, diet, medications, hygiene, antioxidants, and nutrients) associated with asthma, obesity, or both⁶ might alter the gut milieu. Vitamin D deficiency is widespread worldwide⁴⁴ and has been associated with early-life wheeze, reduced asthma control,^{20,21,45} and in-creased body mass index.⁴⁶⁻⁴⁸ Vitamin D has immunemodulatory properties capable of inhibiting inflammation and infections⁴⁹⁻⁵¹ and thus might be important in shaping the early gut microbiota. In this article we first review recent advances in our understanding of the development and immune-modulatory properties of the gut microbiota. Next we discuss current evidence to support a link among the gut microbiota, atopic diseases (including asthma), and obesity. Then we review the outcomes of recent probiotic trials on asthma and obesity. Finally, we review the potential link between vitamin D, asthma, obesity, and the gut microbiota.

GUT MICROBIOTA DEVELOPMENT

Anaerobes (particularly gram-positive Firmicutes and Actinobacteria and gram-negative Bacteroidetes) are the predominant bacteria in the gastrointestinal tracts of adult subjects.⁵² In human subjects the gastrointestinal tract is sterile at birth. Multiple factors determine gut colonization, including bacterial characteristics, mucosal cell characteristics, mode of delivery, and type of diet.^{36,53,54}

The initial neonatal gut colonization is determined either by maternal flora or bacteria from the immediate environment (ie, hospital and health care workers), depending on the mode of delivery.^{53,55} The correlation between the maternal vaginal and intestinal flora might ultimately explain the correlation between the maternal and neonatal intestinal flora in children born by means of vaginal delivery.⁵⁶⁻⁵⁹ Neonates born by means of vaginal delivery are exposed to the mother's vaginal and intestinal flora as they pass through the birth canal and typically harbor communities of bacteria that resemble those of the mother's flora.^{55,60} Compared with vaginal delivery, cesarean section is

associated with early gut colonization with *Klebsiella* species, *Clostridium* species, and Enterobacteriaceae other than *Escherichia coli*.^{36,55} On the other hand, children born by means of cesarean section are colonized later and less frequently by *Bacteroides* species,^{36,53,55} *Bifidobacterium* species,^{36,53,55} and *E coli*.^{36,53}

Data in mice have shown differences in innate immune responses between pups delivered by means of cesarean section and those born by means of vaginal delivery.⁶¹ Activation of intestinal epithelial cells occurred only in pups born by means of vaginal delivery. This intestinal epithelial cell activation occurs through contact with exogenous endotoxin acquired from maternal body fluids during vaginal delivery.⁶¹ In human subjects, birth by means of cesarean section results in alterations in the composition of the infant's gut flora lasting up to at least 6 months of age.⁶² Risk for atopy, asthma, and allergic rhinitis⁶³⁻⁶⁶ has been associated with cesarean section delivery, perhaps because of a lack of exposure to the maternal vaginal flora, gut flora, or both during normal delivery.

The type of feeding instituted early in life also influences neonatal gut colonization.^{23,36} Although the data have been somewhat contradictory, in general the numbers of *Clostridium* (especially *C difficile*) species, *Bacteroides* species, enterococcocci, and Enterobacteriaceae (especially *Klebsiella and Enterobacter* species) tend to be lower and the number of staphylococci tend to be higher in breast-fed compared with formula-fed infants, perhaps because of higher exposure to maternal skin flora.⁶⁷ One study demonstrated that in breast-fed infants the predominant bacterial species at age 8 weeks was *Bifidobacterium*, whereas in formula-fed neonates *Bacteroides* species predominated.⁶⁸

In a study by Penders et al,⁵⁵ hospitalization and premature birth were also associated with a high prevalence of C difficile counts similar to those seen after cesarean delivery, which might be related to hospital environmental exposure.⁵⁵ In the same study antibiotic use in the first month of life was associated with reduced numbers of anaerobes, such as bifidobacteria and Bacteroides species.⁵⁵ Similarly, other studies have also found reduced numbers of anaerobes and higher numbers of enterococci, Enterobacteriaceae, and coagulase-negative staphylococci in infants from the neonatal intensive care units, where antibiotics are frequently used.69,70 Antibiotic use in early life might lead to alterations in gut microbiota and, ultimately, abnormal development of the immune system.⁷¹ However, it has been observed that a majority of bacterial species return to pretreatment levels relatively quickly after an antibiotic course, with the exception of a few species that fail to recover after an extended period of time.^{72,73} Although the effect of antibiotic treatment might have long-term effects, no causal association between postnatal antibiotic use and atopic diseases has been demonstrated.⁷⁴⁻⁷⁸ The association between early antibiotic use and later development of asthma⁷⁹ is likely due to reverse causation (ie, antibiotics are more often prescribed to children predisposed to asthma).^{37,74,80,81} Limited evidence suggests that antibiotic use during pregnancy⁸² and at the time of delivery⁸³ increases the risk of atopy⁸² and persistent wheeze⁸³ in childhood. However, in the study by Penders et al,⁵⁵ maternal antibiotic use in the last month of pregnancy was not associated with changes in the infant's gut microbiota.

Although bacterial colonization of the gut is completed approximately 1 week after birth, the numbers and species of bacteria fluctuate markedly during the first few months of life.^{25,26,84} Given the relative instability^{25,26} of the intestinal

TABLE I. Studies of the association between the infant's intestinal or intrauterine microflora and asthma-related phenotypes in childhood

Reference	Study type; study area	Sample size	Intestinal microflora measurement	Outcome
Bjorksten et al, ³² 1999	Cross-sectional; Estonia and Sweden	Sixty-two 2-year-old children	Bacterial culture	Allergic children are less often colonized with lactobacilli and anaerobes and more often colonized with aerobes: coliform bacteria and <i>Staphylococcus aureus</i> .
Bottcher et al, ³³ 2000	Cross-sectional; Sweden	Twenty-five allergic and 47 nonallergic 13-month-old infants	Gas chromatography of bacterial fatty acids	Fatty acid profiles differed between allergic and nonallergic infants. Allergic infants had higher levels of i-caproic acid (associated with <i>Clostridium difficile</i>).
Kalliomaki et al, ³⁸ 2001	Longitudinal; Finland	Seventy-six infants	GLC of bacterial fatty acids; FISH of bacterial cells at 3 wk and 3 mo	Fatty acid profiles differed between allergic and nonallergic infants. By using FISH, children with allergic sensitization at 12 mo had more clostridia in infancy.
Penders et al, ³⁵ 2007	Longitudinal (KOALA); The Netherlands	Nine hundred fifty-seven children	RT-PCR of feces at 1 mo	Presence of <i>Escherichia coli</i> was associated with increased risk of eczema. <i>Clostridium</i> <i>difficile</i> was associated with increased risk of eczema and allergic sensitization at 2 y of age.
Murray et al, ³⁴ 2005	Case-control; United Kingdom	Thirty-three case-control pairs: sensitized wheezy cases vs nonsensitized nonwheezy control subjects (mean age, 4.4 y)	PCR combined with DGGE and quantification of bifidobacteria by means of FISH	There was no difference in prevalence of lactic acid bacteria or bifidobacteria between cases and control subjects. Cases with eczema had fewer bifidobacteria.
Verhulst et al, ³⁷ 2008	Longitudinal; Belgium	One hundred fifty-four children	Bacterial culture at 3 wk of age	Increasing total concentration of anaerobic bacteria was associated with increased odds of wheezing. Increasing concentrations of <i>Clostridium</i> species was protective of wheezing in the first year of life
Forno et al, ¹⁰⁸ 2008	Case-control nested within longitudinal study; United States	Twenty-one infants: with vs without eczema	DGGE of stool at 1 and 4 mo	Increase in diversity of gut microbiota was significant in control subjects but not in cases.
Keski-Nisula et al, ¹²⁹ 2009	Longitudinal; Finland	Four hundred sixty children	Microbial culture of amniotic fluid at time of cesarean section	Intrauterine growth of anaerobic bacteria and <i>Streptococcus</i> species was associated with increased risk of doctor-diagnosed asthma at age 15-17 y.

DGGE, Denaturing Gradient Gel Electrophoresis; FISH, fluorescence in situ hybridization; GLC, gas-liquid chromatography.

colonization process during early life, any disturbance of this process might affect the microbiota and its function, potentially affecting the host's health.

GUT MICROBIOTA AND IMMUNE RESPONSES

Murine models suggest that bacterial gut colonization is essential for postnatal maturation of $T_{\rm H}1$ immune responses and

induction of oral tolerance.⁸⁵ However, the specific microbes or groups of microbes responsible for this phenomenon have not been confidently identified. In neonatal mice the administration of antibiotics leads to alterations of the intestinal flora and impaired T_H1 immune responses⁸⁶ that can be reversed by administration of *Enterococcus faecalis* (and, to a lesser extent, *Lactobacillus acidophilus*) to neonates but not older mice.⁸⁷ In another study a full intestinal flora, but not monocolonization with *E coli*

or lactobacilli, supported normal oral tolerance.⁸⁸ In germ-free mice presentation of a bacterial capsular polysaccharide A of Bacteroides fragilis by intestinal dendritic cells activates CD4⁺ T cells, elicits appropriate cytokine production, and restores adequate balance of T_H1/T_H2 immune responses. In rodents some Lactobacillus species strains have been shown to induce production of IL-12 and IFN- γ and suppress production of total IgE.⁸⁹⁻⁹¹ Neonatal treatment with Lactobacillus rhamnosus GG has been shown to inhibit the development of experimental asthma in mice that was associated with increased forkhead box protein 3 expression and TGF-β production.⁹² In another study oral treatment with live Lactobacillus reuteri (but not Lactobacillus salivarius) significantly attenuated inflammatory cell influx to the lung and decreased allergen-induced airway hyperresponsiveness in mice.⁹³ In a follow-up study Karimi et al⁹⁴ demonstrated that the L reuteri-induced attenuation of allergic airway response was mediated through the suppressive function of regulatory T (Treg) cells. In other murine models stimulation with LPS increases proliferation and efficiency of Treg cells through activa-tion of their Toll-like receptors.^{95,96} *In vitro* experiments show that cultured human intestinal cells produce TGF- β in response to stimulation with microbial antigens⁹⁷ and that some bifidobacterial species stimulate production of IL-10 in cord blood.98

Experimental data contributing to understanding of the gut microbiota's effects on immune modulation are reviewed in detail in this issue by McLoughlin and Mills.⁹⁹ Collectively, these data suggest complex effects of gut microbiota on adaptive, innate, and Treg immunity that could influence asthma and obesity.

GUT MICROBIOTA AND ATOPIC DISEASES

In cross-sectional studies the composition of the gut flora differs between atopic and nonatopic infants.^{31,32} In studies from Estonia and Sweden, atopic infants have lower counts of lactobacilli, bifidobacteria, and *Bacteroides* species and higher levels of i-caproic acid (a marker of *C difficile*) compared with nonatopic infants.^{32,33} Although an English study found no differences in bifidobacteria or lactic acid bacteria between children (ages 3-5 years) with and without atopic wheeze, it had a small sample size (n = 66) and no additional data on stool cultures.³⁴ Although most cross-sectional studies have examined only atopic dermatitis as an outcome, one study found increased risk of asthma with increased *C difficile* colonization.³⁵

Few prospective studies have examined the relation between the gut flora in early life and atopy. Among 76 Finnish children, bacterial cellular fatty acid profile and a reduced ratio of bifidobacteria to clostridia (determined by means of fluorescence in situ hybridization) in stool samples at age 3 weeks was associated with allergen sensitization at age 1 year.³⁸ In a study of 324 European infants followed from birth to age 18 months, neither time to gut colonization with 11 bacterial groups nor the ratio of strict anaerobic to facultative anaerobic bacteria in cultures from neonatal stool samples was associated with eczema or food allergy.³⁶ In contrast, a study of 957 Dutch infants showed that the presence of C difficile in stool samples at age 1 month (assessed by means of quantitative real-time PCR) was associated with increased risk of atopic dermatitis, recurrent wheeze, and allergic sensitization at age 2 years.³⁵ In that study early colonization with E coli was associated with parental report of eczema but not with objectively diagnosed atopic dermatitis. In a Belgian study wheezing in the first year of life was associated with an

increased total concentration of anaerobic bacteria and a decreased concentration of *Clostridium* species in stool cultures obtained at 3 weeks of age.³⁷

Published longitudinal studies of the neonatal gut flora and atopy or atopic diseases have been limited by inadequate statistical power,^{36,38} noncomprehensive microbiologic assessment of neonatal stool samples,^{35,36,38} heterogeneity of study participants,^{36,38} inadequate data on maternal and neonatal diet,^{35,36,38} nonassessment of the maternal gut and vaginal flora,^{35,36,38} failure to examine modification of the effect of the gut flora on atopy by mode of delivery,^{35,36,38} and nonuse of novel statistical approaches to explore potential microbial interactions.^{35,36,38} Moreover, studies that examined the association between neonatal gut flora and wheeze or asthma^{35,37} did not examine differences in gut microbiota between atopic and nonatopic wheeze/asthma.

GUT MICROBIOTA AND OBESITY

Experimental models highlight several mechanisms connecting the gut microbiota to obesity and metabolic disorders. The recognition that gut microbiota is important in the regulation of energy extraction from the diet¹⁰⁰ came from the observation that germ-free mice (raised in the absence of microorganisms) were leaner than mice with a normal gut microbiota, even though mice with a normal gut microbiota were fed 30% less calories.¹⁰¹ Moreover, when germ-free mice were transplanted with gut microbiota harvested from mice with normal gut microbiota they gained 60% body fat and became insulin resistant, despite lower food intake.¹⁰¹ Subsequent studies also demonstrated the role of gut microbiota in regulating energy storage as triglyceride^{101,102} and energy expenditure from fatty acid oxidation.¹⁰²

Most recently, gut microbiota has been linked to low-grade inflammation through activation of innate immunity through the LPS–Toll-like receptor 4 axis.¹⁰³ Cani et al¹⁰⁴ demonstrated that mice fed a high-fat diet for 2 to 4 weeks exhibited a significant increase in circulating LPS levels (described as "metabolic endo-toxemia") and that these mice became obese and had obesity-associated metabolic disorders.^{104,105} Similarly, mice infused with LPS (to reach levels observed in mice that were fed a high-fat diet) also had obesity and obesity-associated metabolic disorders.^{104,105}

Obesity has further been shown to be associated with altered gut microbial composition in human subjects^{39,43} and mice.⁴¹ The guts of obese human subjects were shown to have reduced numbers of Bacteroidetes and increased numbers of Firmicutes compared with those of their lean counterparts.³⁹ In a few obese human subjects, an increased proportion of fecal Bacteroidetes was found to parallel weight loss on a hypocaloric diet during a 1-year intervention trial.³⁹ Compared with lean mice, genetically obese mice (leptin-deficient mice) have reduced numbers of Bacteroidetes and increased numbers of Firmicutes isolated from the distal gut.⁴¹ Diet-induced obesity in animal models also led to increased Mollicutes (a class of Firmicutes) that was reversible with dietary manipulation to limit weight gain.⁴² The fact that microbial composition is reversible with dietary modification suggests that differences in the gut composition of the obese and lean phenotypes are related to dietary factors independent of the obese state.106,107

Data on gut microbiota and obesity in children are sparse. In a study on probiotics and allergic diseases, Kalliomaki et al⁴⁰ demonstrated that children who had normal weight at the age of

7 years had a higher number of *Bifidobacterium* species and lower numbers of *Staphylococcus aureus* in infancy than those who were overweight at age 7 years.

Collectively, current evidence supports a role for gut microbiota in the pathogenesis of diet-induced obesity and its related metabolic disorders, which might be reversible with diet and/or gut microbiota manipulation.

PROBIOTICS, ATOPIC DISEASES, AND OBESITY

Emerging evidence suggests that a less diverse population of intestinal anaerobes in early life is associated with both atopic diseases (Table I) and obesity.^{43,108} Probiotics (live bacteria given orally that allow for intestinal colonization) provide a relatively safe microbial stimulus by means of cultures of organisms that are part of the gut flora of healthy infants.¹⁰⁹ In a study of 132 infants with a family history of atopy,¹¹⁰ treatment with L rhamnosus strain GG before and after birth halved the risk of eczema (95% CI for relative risk, 0.3-0.8) but not that of allergen sensitization by age 2 years. These results remained appreciably unchanged after 4^{111} and 7^{112} years of follow-up. Interestingly, whereas the frequency of atopic sensitization at the age of 7 years was similar between the placebo and probiotic group, allergic rhinitis and asthma tended to be more common in the probiotic group,¹¹² Administration of lactobacilli GG to atopic children has been associated with increased production of cytokines produced by Treg cells (IL-10 and TGF- β)^{113,114} and reduced severity of atopic dermatitis in a small number of infants.⁶⁹ Another small clinical trial showed reduced severity of atopic dermatitis in children (aged 6-18 months) with moderate to severe disease by means of administration of Lactobacillus fermentum,¹¹⁵ which might be mediated by increased secretion of IFN- γ by T_H1 cells.¹¹⁶ In a recent study of 925 mother-infant pairs, prenatal administration of probiotics (containing 4 bacterial strains) during the last month of pregnancy and postnatal administration of probiotics and prebiotics from birth to age 6 months resulted in short-lived changes in the neonatal gut flora and reduced the incidence of atopic eczema (but had no effect on other atopic diseases or allergic sensitization) at age 2 years.¹¹⁷ In the same clinical trial, among the 891 children with complete follow-up at age 5 years, prenatal and postnatal probiotic supplementation did not prevent eczema, allergic rhinitis, or asthma at the age of 5 years.¹¹⁸ However, cesarean section-delivered children supplemented with probiotics had fewer IgE-associated allergic diseases, such as eczema, and less allergic sensitization.¹¹⁸ Probiotics have not been shown to prevent asthma. In one study probiotic administration was associated with increased wheezing in children.119

A recent meta-analysis¹²⁰ of 12 clinical trials, which included some of the trials presented here, did not find a significant reduction in the symptoms or severity of eczema in children who were treated with probiotics. As pointed out by the authors, there was significant heterogeneity between studies.¹²⁰ Although there is still a potential role for probiotics in preventing childhood atopic dermatitis and other allergic diseases, there are many unanswered questions, including strain, dosing, and timing of probiotic administration and the population or populations most likely to benefit (eg, neonates born by means of caesarean section and formula-fed infants).

Although gut microbiota manipulation in experimental models has shown promising results in controlling obesity, findings from

clinical trials in human subjects are conflicting and potentially confounded by dietary habits, antibiotics, nutritional supplementation, and physical activity. Findings from a randomized doubleblind controlled trial of prenatal and postnatal administration of *L rhamnosus* (beginning 4 weeks before expected delivery and continuing for 6 months after delivery) suggest that probiotics might modify the growth pattern of the child by restraining the excessive weight gain that occurs in the first 1 to 2 years of life but not that between age 2 to 4 years.¹²¹ Maternal probiotic supplementation of 265 pregnant women in the first trimester did not show significant differences in either prenatal or postnatal growth rates.^{121,123}

VITAMIN D, GUT MICROBIOTA, ASTHMA, AND OBESITY

Vitamin D deficiency has been associated with early-life wheeze, reduced asthma control^{20,21,45} and allergic diseases,^{20,45} and increased body mass index.⁴⁶⁻⁴⁸ In our recent review in this *Journal*,⁶ we had identified both gut microbiota and vitamin D as potential common early-life exposures for asthma and obesity. It is unknown whether vitamin D deficiency affects the composition of the intestinal microbiota. Although a small study suggested that decreased vitamin D intake was correlated with differences in fecal microbiota composition,¹²⁴ this needs to be verified in larger cohorts.

Given the role of vitamin D in Treg and dendritic cell development and function (reviewed in Griffin et al¹²⁵ and in Adorini and Penna¹²⁶), it is possible that the host's vitamin D status could modify the effect of the intestinal microbiota on the immune system. For example, mice that lack the vitamin D receptor (VDR) have chronic, low-grade inflammation in the gastrointestinal tract.¹²⁷ Furthermore, the absence of the VDR leads to decreased homing of T cells to the gut, resulting in further inflammation in response to normally nonpathogenic bacterial flora.¹²⁷ Intestinal VDR has also been shown to be directly involved in suppression of bacteria-induced nuclear factor- κ B activation.¹²⁸ Wu and colleagues¹²⁸ also showed that commensal bacterial colonization affects both the distribution and expression of VDR in intestinal epithelial cells, suggesting a dynamic interplay between these bacteria and the receptor.

Thus emerging evidence suggests that the vitamin D pathway is a potentially important modifier of the effects of intestinal flora on inflammatory disorders.

CONCLUSIONS

Significant differences between the gut flora of children in industrialized and developing nations suggest that the high prevalence of allergic diseases (eg, atopic asthma) and obesity in affluent nations might be due to changes in the intestinal flora of young infants. Although findings from cross-sectional³¹⁻³³ and birth cohort^{7,8,16} studies suggest that the maternal and neonatal gut flora influence childhood atopic diseases and obesity, these studies have been limited by small sample size,³⁸ inadequate assessment of the composition and determinants (eg, diet) of the neonatal gut flora, ^{35,38,121-123} and absence of data on the maternal vaginal or gut flora.^{35,38,121-122}

Probiotic supplementation with specific strains of microbes might be beneficial in the prevention of childhood atopic dermatitis when given in the prenatal or early postnatal life. However, the results of several trials have been inconsistent with regard to the type of probiotic used, the dosing and timing of the agent selected, and the population or populations likely to benefit. On the basis of current data, we cannot yet recommend probiotics as preventive treatment for atopic dermatitis, allergic sensitization, asthma, or obesity.

Recent experimental and epidemiologic data suggest diverse gut colonization early in life, rather than a specific microbial strain or strains, is likely the key factor in promoting normal immune development and maintaining immune homeostasis. Additionally, the role of the VDR and the host's vitamin D status have not been accounted for in these studies. Therefore welldesigned birth cohort studies with extensive data on neonatal gut and maternal vaginal/gut microbiome, immune responses, vitamin D status and vitamin D genomics, and confounding/modifying variables (eg, maternal and neonatal diet) are needed to further delineate the underlying immune modulation by gut microbiota important in the development and prevention of allergic diseases, asthma, and obesity.

What do we know?

- Neonatal gut microbial colonization is important in promoting and maintaining a balanced immune response.
- Current data suggest that reduced or altered neonatal gut microbiota composition influences childhood atopic dermatitis.
- Probiotic supplementation in the prenatal or early postnatal life might be beneficial but cannot be confidently recommended for the prevention of atopic dermatitis.

What is still unknown?

- There has been no fully adequate longitudinal study of the early-life gut microbiota and the development of asthma and obesity.
- There are no current data to support the use of probiotics in the treatment or prevention of asthma and obesity.

REFERENCES

- 1. Asthma American Lung Association Lung Disease Data, 2008. Available at: http://www.lungusa.org. Accessed March 4, 2011.
- Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368:733-43.
- 3. James WP. The epidemiology of obesity: the size of the problem. J Intern Med 2008;263:336-52.
- Bergeron C, Boulet LP, Hamid Q. Obesity, allergy and immunology. J Allergy Clin Immunol 2005;115:1102-4.
- Hallstrand TS, Fischer ME, Wurfel MM, Afari N, Buchwald D, Goldberg J. Genetic pleiotropy between asthma and obesity in a community-based sample of twins. J Allergy Clin Immunol 2005;116:1235-41.
- Litonjua AA, Gold DR. Asthma and obesity: common early-life influences in the inception of disease. J Allergy Clin Immunol 2008;121:1075-86.
- McLachlan CR, Poulton R, Car G, Cowan J, Filsell S, Greene JM, et al. Adiposity, asthma, and airway inflammation. J Allergy Clin Immunol 2007;119:634-9.
- Shore SA. Obesity and asthma: possible mechanisms. J Allergy Clin Immunol 2008;121:1087-95.
- Sood A. Does obesity weigh heavily on the health of the human airway? J Allergy Clin Immunol 2005;115:921-4.
- Sutherland TJ, Cowan JO, Young S, Goulding A, Grant AM, Williamson A, et al. The association between obesity and asthma: interactions between systemic and airway inflammation. Am J Respir Crit Care Med 2008;178:469-75.

- Murphy A, Tantisira KG, Soto-Quiros ME, Avila L, Klanderman BJ, Lake S, et al. PRKCA: a positional candidate gene for body mass index and asthma. Am J Hum Genet 2009;85:87-96.
- Melen E, Himes BE, Brehm JM, Boutaoui N, Klanderman BJ, Sylvia JS, et al. Analyses of shared genetic factors between asthma and obesity in children. J Allergy Clin Immunol 2010;126:631-7, e1-8.
- Beuther DA, Sutherland ER. Obesity and pulmonary function testing. J Allergy Clin Immunol 2005;115:1100-1.
- Boulet LP, Franssen E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir Med 2007;101:2240-7.
- Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J 2006;27:495-503.
- Sutherland ER, Lehman EB, Teodorescu M, Wechsler ME. Body mass index and phenotype in subjects with mild-to-moderate persistent asthma. J Allergy Clin Immunol 2009;123:1328-34, e1.
- Devereux G, Seaton A. Diet as a risk factor for atopy and asthma. J Allergy Clin Immunol 2005;115:1109-17.
- Black PN, Sharpe S. Dietary fat and asthma: is there a connection. Eur Respir J 1997;10:6-12.
- Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72:690-3.
- Brehm JM, Celedon JC, Soto-Quiros ME, Avila L, Hunninghake GM, Forno E, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica. Am J Respir Crit Care Med 2009;179:765-71.
- Brehm JM, Schuemann B, Fuhlbrigge AL, Hollis BW, Strunk RC, Zeiger RS, et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol 2010;126:52-8, e5.
- Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, et al. Functional food science and gastrointestinal physiology and function. Br J Nutr 1998;80(suppl 1):S147-71.
- 23. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003;361: 512-9.
- Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 2007;622:58-69.
- Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007;5:e177.
- Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007;449:811-8.
- Sherman CB, Tosteson TD, Tager IB, Speizer FE, Weiss ST. Early childhood predictors of asthma. Am J Epidemiol 1990;132:83-95.
- Parsons TJ, Powers C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord 1999;23(suppl):S1-S107.
- Benyshek DC. The developmental origins of obesity and related health disorders —prenatal and perinatal factors. Coll Antropol 2007;31:11-7.
- Vickers MH, Krechowec SO, Breier BH. Is later obesity programmed in utero? Curr Drug Targets 2007;8:923-34.
- Sepp E, Julge K, Vasar M, Naaber P, Bjorksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr 1997;86:956-61.
- Bjorksten B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 1999;29:342-6.
- Bottcher MF, Nordin EK, Sandin A, Midtvedt T, Bjorksten B. Microfloraassociated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy 2000;30:1590-6.
- 34. Murray CS, Tannock GW, Simon MA, Harmsen HJ, Welling GW, Custovic A, et al. Fecal microbiota in sensitized wheezy and non-sensitized non-wheezy children: a nested case-control study. Clin Exp Allergy 2005;35:741-5.
- 35. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 2007;56:661-7.
- Adlerberth I, Strachan DP, Matricardi PM, Ahrne S, Orfei L, Aberg N, et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 2007;120:343-50.
- Verhulst SL, Vael C, Beunckens C, Nelen V, Goossens H, Desager K. A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life. J Asthma 2008;45:828-32.
- Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107:129-34.
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-3.
- Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008; 87:534-8.

- Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070-5.
- Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008;3:213-23.
- Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480-4.
- Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 2006;81:353-73.
- Gale CR, Robinson SM, Harvey NC, Javaid MK, Jiang B, Martyn CN, et al. Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr 2008;62:68-77.
- Black PN, Scragg R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the third national health and nutrition examination survey. Chest 2005;128:3792-8.
- Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics 2009;124:e362-70.
- Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 2004;89:1196-9.
- Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 2005;124:1080-2.
- Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D (3). J Cyst Fibros 2007;6:403-10.
- Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007;179:2060-3.
- Zoetendal EG, Vaughan EE, de Vos WM. A microbial world within us. Mol Microbiol 2006;59:1639-50.
- Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999;28:19-25.
- Long SS, Swenson RM. Development of anaerobic fecal flora in healthy newborn infants. J Pediatr 1977;91:298-301.
- Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511-21.
- Hill GB, Eschenbach DA, Holmes KK. Bacteriology of the vagina. Scand J Urol Nephrol Suppl 1984;86:23-39.
- Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B. Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 2001;30:49-52.
- Hilton E, Isenberg HD, Alperstein P, France K, Borenstein MT. Ingestion of yogurt containing *Lactobacillus acidophilus* as prophylaxis for candidal vaginitis. Ann Intern Med 1992;116:353-7.
- Antonio MA, Rabe LK, Hillier SL. Colonization of the rectum by *Lactobacil*lus species and decreased risk of bacterial vaginosis. J Infect Dis 2005;192: 394-8.
- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107:11971-5.
- Lotz M, Gutle D, Walther S, Menard S, Bogdan C, Hornef MW. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 2006;203: 973-84.
- Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999;28:19-25.
- Kero J, Gissler M, Gronlund MM, Kero P, Koskinen P, Hemminki E, et al. Mode of delivery and asthma—is there a connection? Pediatr Res 2002;52:6-11.
- Xu B, Pekkanen J, Hartikainen AL, Jarvelin MR. Caesarean section and risk of asthma and allergy in adulthood. J Allergy Clin Immunol 2001;107:732-3.
- 65. Pistiner M, Gold DR, Abdulkerim H, Hoffman E, Celedon JC. Birth by cesarean section, allergic rhinitis, and allergic sensitization among children with a parental history of atopy. J Allergy Clin Immunol 2008;122:274-9.
- Salam MT, Margolis HG, McConnell R, McGregor JA, Avol EL, Gilliland FD. Mode of delivery is associated with asthma and allergy occurrences in children. Ann Epidemiol 2006;16:341-6.
- Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009;98:229-38.
- Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed

- el-Mohandes AE, Keiser JF, Johnson LA, Refat M, Jackson BJ. Aerobes isolated in fecal microflora of infants in the intensive care nursery: relationship to human milk use and systemic sepsis. Am J Infect Control 1993;21:231-4.
- Hallstrom M, Eerola E, Vuento R, Janas M, Tammela O. Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. Eur J Clin Microbiol Infect Dis 2004;23:463-70.
- Celedon JC, Weiss ST. Use of antibacterials in infancy: clinical implications for childhood asthma and allergies. Treat Respir Med 2004;3:291-4.
- Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007;1: 56-66.
- Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008;6:e280.
- Celedon JC. Antibiotic use during the first year of life and asthma. Chest 2006; 130:1624, author reply 1645.
- Illi S, von Mutius E, Lau S, Bergmann R, Niggemann B, Sommerfeld C, et al. Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ 2001;322:390-5.
- Celedón JC, Litonjua AA, Ryan L, Weiss ST, Gold DR. Lack of association between antibiotic use in the first year of life and asthma, allergic rhinitis, or eczema at age 5 years. Am J Respir Crit Care Med 2002;166:72-5.
- Celedon JC, Fuhlbrigge A, Rifas-Shiman S, Weiss ST, Finkelstein JA. Antibiotic use in the first year of life and asthma in early childhood. Clin Exp Allergy 2004; 34:1011-6.
- Harris JM, Mills P, White C, Moffat S, Newman Taylor AJ, Cullinan P. Recorded infections and antibiotics in early life: associations with allergy in UK children and their parents. Thorax 2007;62:631-7.
- Marra F, Lynd L, Coombes M, Richardson K, Legal M, Fitzgerald JM, et al. Does antibiotic exposure during infancy lead to development of asthma?: a systematic review and metaanalysis. Chest 2006;129:610-8.
- Mai XM, Kull I, Wickman M, Bergstrom A. Antibiotic use in early life and development of allergic diseases: respiratory infection as the explanation. Clin Exp Allergy 2010;40:1230-7.
- Su Y, Rothers J, Stern DA, Halonen M, Wright AL. Relation of early antibiotic use to childhood asthma: confounding by indication? Clin Exp Allergy 2010; 40:1222-9.
- McKeever TM, Lewis SA, Smith C, Hubbard R. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the West Midlands General Practice Database. Am J Respir Crit Care Med 2002; 166:827-32.
- Rusconi F, Galassi C, Forastiere F, Bellasio M, De Sario M, Ciccone G, et al. Maternal complications and procedures in pregnancy and at birth and wheezing phenotypes in children. Am J Respir Crit Care Med 2007;175:16-21.
- Bjorksten B. Effects of intestinal microflora and the environment on the development of asthma and allergy. Springer Semin Immunopathol 2004;25:257-70.
- Sudo N, Sawamura S-a, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997;159:1739-45.
- Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J Allergy Clin Immunol 2001;107:153-9.
- Sudo N, Yu XN, Aiba Y, Oyama N, Sonoda J, Koga Y, et al. An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin Exp Allergy 2002;32:1112-6.
- Rask C, Evertsson S, Telemo E, Wold AE. A full flora, but not monocolonization by *Escherichia coli* or lactobacilli, supports tolerogenic processing of a fed antigen. Scand J Immunol 2005;61:529-35.
- Murosaki S, Yamamoto Y, Ito K, Inokuchi T, Kusaka H, Ikeda H, et al. Heatkilled *Lactobacillus plantarum* L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J Allergy Clin Immunol 1998;102:57-64.
- Shida K, Takahashi R, Iwadate E, Takamizawa K, Yasui H, Sato T, et al. *Lacto-bacillus casei* strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 2002;32:563-70.
- Hessle C, Hanson LA, Wold AE. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clin Exp Immunol 1999;116: 276-82.
- Feleszko W, Jaworska J, Rha RD, Steinhausen S, Avagyan A, Jaudszus A, et al. Probiotic-induced suppression of allergic sensitization and airway inflammation

is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy 2007;37:498-505.

- Forsythe P, Inman MD, Bienenstock J. Oral treatment with live *Lactobacillus reu*teri inhibits the allergic airway response in mice. Am J Respir Crit Care Med 2007;175:561-9.
- Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 2009;179:186-93.
- Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003;197:403-11.
- Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005;122:107-18.
- 97. Yoshioka T, Morimoto Y, Iwagaki H, Itoh H, Saito S, Kobayashi N, et al. Bacterial lipopolysaccharide induces transforming growth factor beta and hepatocyte growth factor through toll-like receptor 2 in cultured human colon cancer cells. J Int Med Res 2001;29:409-20.
- Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, et al. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin Diagn Lab Immunol 2004;11:686-90.
- McLoughlin RM, Mills KHG. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J Allergy Clin Immunol 2011;127:1097-107.
- Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009;1:6ra14.
- Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004;101:15718-23.
- Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007;104:979-84.
- 103. Musso G, Gambino R, Cassader M. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders. Curr Opin Lipidol 2010;21:76-83.
- Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56:1761-72.
- 105. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-81.
- 106. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009;137:1716-24, e1-2.
- Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009;15:1546-58.
- Forno E, Onderdonk AB, McCracken J, Litonjua AA, Laskey D, Delaney ML, et al. Diversity of the gut microbiota and eczema in early life. Clin Mol Allergy 2008;6:11.
- 109. Borriello SP, Hammes WP, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, et al. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 2003;36:775-80.
- Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 2001;357:1076-9.

- 111. Kalliomaki M, Salminen S, Poussa T, Arvilommi H, Isolauri E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebocontrolled trial. Lancet 2003;361:1869-71.
- 112. Kalliomaki M, Salminen S, Poussa T, Isolauri E. Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol 2007;119:1019-21.
- Pessi T, Sutas Y, Hurme M, Isolauri E. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy 2000;30: 1804-8.
- Isolauri E, Arvola T, Sutas Y, Moilanen E, Salminen S. Probiotics in the management of atopic eczema. Clin Exp Allergy 2000;30:1604-10.
- Weston S, Halbert A, Richmond P, Prescott SL. Effects of probiotics on atopic dermatitis: a randomised controlled trial. Arch Dis Child 2005;90:892-7.
- 116. Prescott SL, Dunstan JA, Hale J, Breckler L, Lehmann H, Weston S, et al. Clinical effects of probiotics are associated with increased interferon-gamma responses in very young children with atopic dermatitis. Clin Exp Allergy 2005;35:1557-64.
- 117. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 2007;119:192-8.
- 118. Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol 2009;123:335-41.
- 119. Kopp MV, Hennemuth I, Heinzmann A, Urbanek R. Randomized, double-blind, placebo-controlled trial of probiotics for primary prevention: no clinical effects of *Lactobacillus* GG supplementation. Pediatrics 2008;121:e850-6.
- Boyle RJ, Bath-Hextall FJ, Leonardi-Bee J, Murrell DF, Tang ML. Probiotics for the treatment of eczema: a systematic review. Clin Exp Allergy 2009;39:1117-27.
- 121. Luoto R, Kalliomaki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond) 2010;34:1531-7.
- Laitinen K, Poussa T, Isolauri E. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr 2009;101:1679-87.
- 123. Luoto R, Laitinen K, Nermes M, Isolauri E. Impact of maternal probioticsupplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br J Nutr 2010; 103:1792-9.
- 124. Mai V, McCrary QM, Sinha R, Glei M. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr J 2009;8:49.
- 125. Griffin MD, Xing N, Kumar R. Vitamin D and its analogs as regulators of immune activation and antigen presentation. Annu Rev Nutr 2003;23:117-45.
- Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol 2009;70:345-52.
- 127. Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT. Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci U S A 2008;105: 20834-9.
- Wu S, Liao AP, Xia Y, Li YC, Li JD, Sartor RB, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J Pathol 2010;177:686-97.
- 129. Keski-Nisula L, Katila ML, Remes S, Heinonen S, Pekkanen J. Intrauterine bacterial growth at birth and risk of asthma and allergic sensitization among offspring at the age of 15 to 17 years. J Allergy Clin Immunol 2009;123:1305-11.