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summarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells
in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently
re-propose vitamin D to be a novel and economical anticancer agent.
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Tumor microenvironment (TME) is comprised of various stromal
cells (e.g., endothelia, cancer-associated fibroblasts, and immune
cells) and extracellular components (e.g., cytokines and extra-
cellular matrix), which surround tumor cells and are nourished by
a vascular system. The pivotal roles of TME during tumor
initiation, progression, and metastasis have been recently reviewed
in detail elsewhere'~. Importantly, TME greatly influences ther-
apeutic efficacy and emerges as a new target for treating tumors” .
Vitamin D is a multifunctional precursor of the potent steroidal
hormone calcitriol (1a,25-dihydroxyvitamin Ds, 1,25(0OH),D3). As
most foods contain little vitamin D, there are certain diseases which
need vitamin D as a dietary supplement to replenish the deficiency,
especially for the elderly and children to maintain adequate vitamin D
store for bone health and autoimmunity®. Recently, epidemiological
and clinical observations strongly suggest that vitamin D deficiency or
low circulating 25-hydroxyvitamin D (25(OH)D) level in serum
increases the risk of developing multiple malignancies. Experimental
evidence also showed that 1,25(0OH),Ds, the active form of vitamin D,
can exhibit anticancer actions through different signaling pathways,
including inhibition of proliferation, induction of cell apoptosis and
differentiation, as well as suppression of metastasis and angiogenesis in
various cancers. Notably, vitamin D was found to not only have
profound effects on normal cancer cells, but also on cancer-associated
stromal cells and cancer stem cells within the TME. Regarding the
important role of TME in cancer initiation, progression, metastasis and
recurrence, vitamin D might be used as a therapeutic agent targeting
the TME to assist clinical treatment and prognosis for many kinds of
cancer. Herein, this review summarized the anticancer action of vitamin
D in the TME of cancer cells, stroma cells and cancer stem cells. We
also outlined the epidemiological studies and clinical trials of vitamin
D, providing a better understanding of the role of vitamin D in cancer
treatment to re-propose vitamin D as a novel anticancer agent.

2. Potentiating vitamin D as an anticancer agent
2.1.  Vitamin D metabolism and signaling

2.1.1.  Vitamin D metabolism

After absorption, vitamin D binds to vitamin D-binding protein (DBP,
also named as GC) in the circulation, and is transported to the liver.
There are three main enzymes, ie., CYP27A1, CYP27B1 and
CYP24B1, involved in vitamin D metabolism. The metabolic process
of vitamin D in human is depicted in Fig. 1. Briefly, vitamin D can be
hydroxylated by CYP27A1, and converted into 25(OH)D in the liver.
Further, 25(OH)D is catalyzed by CYP27B1 in the kidney, which
results in the active form 1,25(0H),D;. 1,25(OH),D; is mainly
responsible for the biological function of vitamin D in humans.
However, CYP24A1 functions inversely, converting 1,25(OH),D; into

an inactive form. In fact, the expression of CYP24A1 is highly induced
by 1,25(OH),D;, which is thus the limiting step of vitamin D
activation. CYP24A1 is usually highly expressed in cancer tissues,
and CYP24Al-induced vitamin D insufficiency might also promote
cancer progression. A study of 99 CRC patients demonstrated that
CYP24A1 expression was higher in cancer specimens than paired
normal tissue, and high expression level of CYP24Al strongly
correlated with tumor invasion, lymph node metastasis, decreases in
overall survival (P = 0.026) and advanced CRC recurrences (P =
0.32)". In addition, Shiratsuchi et al.® has recently observed that
knockdown of CYP24A1 significantly restrained lung cancer xenograft
in vivo, suggesting that CYP24A1 could be identified as a potential
oncogene in lung cancer. It was found that a protein kinase CK2
inhibitor, 4,5,6,7-tetrabromobenzimidazole, could enhance the antitu-
mor effect of 1,25(OH),D; on prostate cancer through directly
inhibiting the CYP24A1 expression’. Thus, the inhibition of CYP24A1
expression or activity and exploration of CYP24A1 inhibitors might be
a good way to increase the anticancer action of 1,25(OH),Ds.

2.1.2.  Vitamin D signaling

The biological actions of 1,25(OH),D; are mainly mediated by
vitamin D receptor (VDR) via genomic pathway, although a
1,25(OH),D3-induced non-genomic pathway has been identified
recently (Fig. 1). The binding of 1,25(OH),D; to VDR triggers
VDR translocation into the nucleus and transcriptionally induces the
downstream target genes such as CDKNIA, C-MYC, CDH]I, and
CYP24A1. Thus, the expression level of VDR in cancers is always
associated with vitamin D response. Notably, high VDR expression
has been found in many cancer types, such as breast cancer and
papillary thyroid carcinoma'®''. There was also a similar trend of
CYP27B1 expression in cancers, which could provide a possible
explanation for VDR overexpression in cancer cells'>'>. High level
of VDR expression has been associated with improvement in
prognosis of patients with lung, prostate, pancreatic, and colorectal
cancers, indicating that VDR expression might be a prognostic
biomarker in these cancers'*™'’. Recently, it was demonstrated that
higher expression level in stroma cells in cancer adenocarcinoma
could facilitate larger actions for vitamin D, thus improving
therapeutic outcome'™'®. Moreover, we recently demonstrated that
higher expression of VDR was found in gastric cancer tissue than
that in normal gastric tissue, and 1,25(OH),Dj3 displayed inhibitory
effect in gastric cancer cells without influencing normal epithelial
cells®. Taken together with the current findings, overexpression of
VDR in cancer cells and tissues or in surrounding stroma cells would
pose an advantage of using vitamin D as an anticancer agent with an
enhanced therapeutic window against cancer. However, although
VDR expression has a predominant role for vitamin D action, VDR
may potentially function as an oncogene. One study reported that
knockdown of VDR evidently induced apoptosis in breast and
prostate cancer cells®', indicating a controversial role for VDR.
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Figure 1 Vitamin D metabolism and signaling. After absorption, vitamin D is hydroxylated by hepatic CYP27A1 into 25(OH)D, which is further
catalyzed by CYP27B1 in the kidney resulting in the active form 1,25(0OH),Ds. 1,25(OH),D5 triggers genomic or non-genomic actions. The
binding of 1,25(0OH),D; to vitamin D receptor (VDR) triggers VDR translocation into nuclear and transcriptionally induces the downstream target
genes such as CDKNIA, C-MYC, CDHI, DKK4, FOXM1, LRP6 and CYP24Al. Alternatively, 1,25(OH),D; induces rapid upregulation of
cytosolic Ca®" concentration and activates Rho-ROCK-p38MAPK-MSK 1 pathway. In certain cancer cells, 1,25(0H),Ds is capable of stimulating

PI3K/Akt/ERK1/2/MAPK pathway.

2.2.  Epidemiological studies

The serum concentration of the vitamin D metabolite 25(OH)D is
commonly used as the index of vitamin D status in body. In
particular, circulating 25(OH)D level in human lower than 20
ng/mL, from 20 to 30 ng/mL, and higher than 30 ng/mL indicate a
deficiency, a relative insufficiency and a sufficiency of vitamin D,
respectively”>>.  Although controversial findings exist, most
epidemiological studies have indicated that serum vitamin D status
is correlated with multiple types of cancer risk, including colon,
prostate, breast, and gastric cancers. Patients with low vitamin D
levels are usually diagnosed with poorer survival and higher
cancer mortality, suggesting that vitamin D might protect indivi-
duals against late stages of carcinogenesis.

2.2.1. Prostate cancer

An early prediagnostic study demonstrated that there was a
prospective decrease in prostate cancer risk in men at age above
57 years with high level of serum 25(OH)D**. A 13-year-follow-up
study involved 129 cases and 167 controls showed that vitamin D
supplement and increased plasma 25(OH)D concentration signifi-
cantly correlated with prostate cancer susceptibility”. A recent
study included 1066 men with prostate cancer within the US

Physicians' Health Study between 1982 and 2000, and 1618
matched healthy men as controls®®. Results suggested that improv-
ing vitamin D status through increased exposure to sunlight and
vitamin D supplement might reduce prostate cancer risk, particularly
in men with the Fokl ff genotype. However, there was a nested
case-control study showing no association between serum 25(OH)D
level and prostate cancer risk’’. A meta-analysis found a significant
association between higher 25(OH)D level and increased prostate
cancer risk’®. It seemed that results in prostate cancer were
somewhat inconsistent, which might be due to the limitations of
selected population and control. Considering that the anticancer
action of vitamin D has been well elucidated in prostate cancer cells
in vitro and in vivo®, more thorough epidemiological studies on
vitamin D and prostate cancer risk may be needed.

2.2.2.  Breast cancer

The relationship between vitamin D intake and breast cancer suscept-
ibility has been well studied. Pooled analysis on breast cancer
supported the inverse correlation between vitamin D and calcium
intake and breast cancer risk, while some of the studies showed no
association’®, Although the results are complex and inclusive, it is
expected that vitamin D supplement still benefits for breast cancer

prevention. In a sectional study, high vitamin D levels significantly
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improved clinical outcomes in Brazilian postmenopausal women with
breast cancer’’. Moreover, it seemed that the association was stronger
in premenopausal vs. postmenopausal women’’*>°. Recently, a
cohort study including 1666 women diagnosed with breast cancer
seemed highly convincing. They found that elevations in serum
25(0OH)D concentrations were associated with superior overall survival
especially among premenopausal women®’, strongly suggesting the use
of serum vitamin D level as a prognostic marker for breast cancer.
Moreover, among African American women, data showed that vitamin
D deficiency increased breast cancer susceptibility by approximately
23%%, indicating vitamin D intake could be consider as a preventive
factor for breast cancer incidence.

2.2.3.  Colorectal cancer

Epidemiological studies conducted on colorectal cancer (CRC) pro-
vided strong support for inverse association between serum
25(0OH)D level and colon cancer risk in both men and women’*~*,
A cross-sectional study indicated that low concentration of 25(OH)D in
serum was significantly associated with adenomas or colon polyps™. A
meta-analysis showed that higher circulating 25(OH)D levels predicted
decrease cancer death of CRC patients*. indicating that restoration of
vitamin D level to normal levels in vitamin D deficient patients might
benefit for a better prognosis of CRC. Notably, the association between
vitamin D status and CRC risk sometimes varied with multiple factors.
For example, a nest case-control study showed that high concentrations
of plasma 25(OH)D was correlated with decreased CRC incidence in
individuals with intense immune reaction but not that with lower-level
immune responses (Odds ratio = 0.10; 95% CIL: 0.03 to 0.35;
P < 0.001)". The association between dietary calcium and vitamin
D supplementation and decreased CRC risk was also observed in a
Japanese population with VDR gene polymorphism Apa I but not Bsm
I and Taq I'°.

2.2.4.  Upper gastrointestinal cancer

Epidemiological studies on upper gastrointestinal (GI) cancers are
limited. In the Cohort Consortium Vitamin D Pooling Project of Rarer
Cancers, a study examined the association between the level of serum
25(OH)D and upper GI cancers (esophageal and gastric cancer). In the
subgroup of Asian, but no Caucasians, there was a significant decrease
of GI cancer risk associated with low concentration of 25(OH)D (Odds
ratio = 0.53, 95% CI: 0.31 to 0.93; P = 0.003)*". Another study only
found prospective evidence in esophageal squamous cell carcinoma
(ESCC) but not in gastric carcinogenesis™®. In a study of 197 gastric
cancer patients, the cancer center of Sun Yat-sen University demon-
strated that vitamin D deficiency might contribute to decreases in
overall survival (P=0.019)*. Until now, the relationship between
vitamin D supplements and upper gastrointestinal cancer risk has not
been unsubstantiated, and the protective and prognostic role of serum
25(OH)D concentrations need to be further analyzed.

2.2.5. Other types of cancer
Some studies have reported an association of bladder cancer risk
with vitamin D insufficiency, suggesting a protective role of
vitamin D in bladder cancer’*™. In addition, the incidences of
other types of cancer (e.g., lung cancer, ovarian cancer, and
melanoma) showed controversial outcomes or indeterminate
results between 25(OH)D concentrations and cancer risk, and the
association might be varied in different cancers™ .

Taken together, epidemiological evidence for the association
between vitamin D supplements and cancer incidence are inclusive,
and the beneficial role of vitamin D sufficiency is not well

established in all cancer types. More well-controlled studies may
be needed. Based on previous studies, additional factors such as
district should be taken into consideration and further assessed. For
example, there might be no statistical significance between plasma
25(0OH)D levels and pancreatic cancer risk in European populations,
whereas high circulating vitamin D levels showed protective effect

. . 56,5
on pancreatic cancer prognosis in USA cohorts’*”’.

2.3.  Clinical trials of vitamin D and its analogues for treatment
of cancers

2.3.1.  Vitamin D and 1,25(0OH),D3

Initial trials of vitamin D have been conducted using its original
form. It has been found that 400 IU is the optimal and safe dose of
vitamin D for adults to prevent cancers, while high-dose higher
than 2000 IU may inversely promote cancer growth in multiple
cancer types such as gastric, pancreatic, colorectal and breast
cancers’®. The selection of proper doses might be one of the
reasons for the controversial role of vitamin D in cancer prevention
and treatment. In one study, vitamin D intake ( > 400 IU) daily
significantly decreased risks of lung cancer among non-smoking
participants®’. However, a clinical trial including 2303 subjects
found that vitamin D intake (2000 IU/day) was not associated with
lower cancer risk compared with the placebo control group in all
cancer types®’. Furthermore, it is seemed that high dose supple-
mentation of calcium and vitamin D was correlated with undesir-
able results. For example, daily intake of calcium (1200 mg/day)
and vitamin D (1000 IU/day) continuous for 3-5 years could
increase the incidence of serrated adenomas in colon among the
participants with one or more colon polyps®'.

Clinical trials performed in most cases were supplied with
1,25(0OH),D5 other than vitamin D to achieve the higher serum
concentrations, expecting to produce the maximum antitumor
effects of 1,25(OH),D5. Clinical studies of 1,25(OH),D5 plus other
anticancer drugs such as docetaxel, estramustine, and carboplatin in
patients with cancers indicated that the high dose (20 IU/kg) of
1,25(0H),D5 was safe and well-tolerated®” . Some of the trials
exhibited promising antitumor activity, while some did not. A phase
II trial of in androgen-independent prostate cancer with high-dose of
1,25(0OH),D5 (480 IU three days per week) for at least one month
plus dexamethasone revealed encouraging antitumor activity®. It
was demonstrated in a phase II study in advanced pancreatic cancer
that 1,25(OH),D3 might have enhanced activity in combination with
docetaxel but not with gemcitabine or erlotinib®’. However, in
another phase II trial of weekly intravenous 1,25(OH),D; at dose of
2960 IU in combination with dexamethasone for castration-resistant
prostate cancer, no positive outcomes were found®*®’. DN-101, a
high-dose calcitriol formulation, was developed to increase the
bioavailability of 1,25(OH),D3;. The maximum tolerated dose
(MTD) of DN-101 was 1800 IU by weekly oral administration,
while hypercalcemia was observed in patients treated at 2400 IU
weekly®. A phase II study in recurrent prostate cancer, combina-
tion therapy with weekly 1,25(OH),D; (DN-101, 1800 IU) and
daily naproxen was associated with prolonged the PSA doubling
time, indicating the encouraging benefit of 1,25(0OH),D; .
However, a randomized phase III trial of androgen-independent
prostate cancer study of calcitriol enhancing taxotere (ASCENT,
DN-101 1800 IU per week) unexpectedly revealed that shorter
overall survival was found in 1,25(OH),D; treatment group
compared to placebo group’'. Consequently, even when a
high dose of 1,25(0OH),D; was studied, the outcomes were not
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Figure 2 Structures of vitamin D analogues.

always promising. In particular, optimization of the dosage
of 1,25(OH),D; might be critical for effective treatment of
cancers.

2.3.2.  Vitamin D analogues

Normally, picomolar concentrations of 1,25(0OH),D; are sufficient to
maintain bone homeostasis, while vitamin D in cancer treatment
sometimes necessitates relatively higher dosages, which simultaneously
increases the risk of hypercalcemia and hypercalciuria. Moreover, 1,25
(OH),D; is chemically unstable, and easily converted into the inactive
form by CYP24Al, limiting the efficacy of vitamin D as a therapeutic
agent. To diminish the side effects and increase the therapeutic effect of
1,25(OH),D; for cancer, vitamin D analogues (Fig. 2), including
EB1089, 19-nor-1a,25-(OH),D, (paricalcitol), BXL-628 (elocalcitol),
calcipotriol, PRI-2191 (tacalcitol, 1,24-dihydroxyvitamin Ds), PRI-
2205 (5,6-trans-isomer of calcipotriol), have been developed and
investigated. The side chain attached to C17 is the main region
involved in development for vitamin D analogues, because it is
responsible for the binding to vitamin D receptor and is the main
target for degradation by CYP24A1. Generally, vitamin D analogues
showed similarly or extensively enhanced tumor effect than
1,25(0OH),D5 and mostly yield less calcemic.

Among the most of these clinically studied analogues is EB1089.
This drug (also named as seocalcitol) is characterized by an altered
side chain structure featuring 26,27-dimethyl groups and two double
bonds. It was synthesized to overcome the side effect of hypercal-
cemia. EB1089 was shown to inhibit prostate cancer metastasis
in vivo with significantly weaker calcemic side effect compared with
1,25(OH)2D372. EB1089 has been shown to induce cell cycle arrest,
cell differentiation and apoptosis in various cancer types including
colon, prostate, breast and hepatocellular cancer (without hypercal-
cemia) both in vitro and in vivo’>”"’. Notably, EB1089 was shown
to be more effective than 1,25(OH),D; in inducing apoptosis

through suppressing BCL-2 and this agent also induced autophagic
cell death in breast cancer cell line MCF7'®", EB1089 was also
significantly less calcemic than 1,25(OH),D; and exhibited anti-
metastatic effects on prostate cancer’”. A phase II clinical study has
shown that it was well tolerated at a daily dose of 10-20 pg, which
is significantly less calcemic than 1,25(OH)2D380. A phase II study
of EB1089 conducted on patients with inoperable hepatocellular
carcinoma indicated promising antitumor activity®'.

Another less calcemic vitamin D analogue, paricalcitol, was applied
in a phase /Il study in advanced androgen-insensitive prostate cancer
patients with iv. receiving paricalcitol at escalating doses of 5 to 25
pg®’. Serum parathyroid hormone (PTH) level, a common index of
advanced prostate cancer, was significantly decreased by paricalcitol,
potentiating it as a therapeutic agent for improving cancer outcome.
Accordingly, oral paricalcitol was also proved to be associated with
low serum PTH level in patients with metastatic breast cancer™.

Inecalcitol, which has been identified as a VDR antagonist,
more effectively activates VDR expression than 1,25(OH),D5; and
exerts much stronger inhibitory effect on prostate cancer®**>. In a
phase I study, in metastatic castration-resistant prostate cancer
patients, the maximum dose of inecalcitol was 4000 pg per
day combined with docetaxel, which showed antiproliferative
activity and 100-fold lower hypercalcemic activity than 1,25
(OH),D5*.

These findings show that there is still limited utility of vitamin D
and 1,25(OH),Dj; for clinical use due to hypercalcemia induced by
high-dose administration. The efficacy of low-dose vitamin D on
cancer prevention or treatment requires additional future study. On
the other hand, less calcemic vitamin D analogues may play an
important role in cancer treatment. Moreover, new combination
treatments of vitamin D analogues and chemotherapeutics for cancer
therapy may be discovered. Current knowledge on clinical trials of

vitamin D and its analogues has been summarized in
Table 13960:6467.68.71.86-93



Table 1  Representative clinical trials of vitamin D intake for cancer prevention or treatment.
Subject Dosage regimen Aim Main finding Ref.
128,779 participants Oral 400 IU vitamin D plus 1 g calcium per day The association between vitamin D intake Among non-smokers, vitamin D intake 59
and lung cancer significantly benefited for decreasing risks of
lung cancer when compared with control.

2303 healthy women Oral 2000 IU vitamin D plus 1500 mg calcium per day Cancer risk Vitamin D supplementation did not reduce 60

cancer risk.

250 patients i.v. docetaxel 36 mg/m2 per week for a 4-week cycle in Comparison of the efficacy and safety of Oral taken DN-101 prolonged survival of 87
combination with 45 pg DN-101 or placebo orally DN-101 and docetaxel with placebo and AIPC patients compared with placebo.
per day before docetaxel docetaxel on AIPC

19 patients Oral DN-101 180 pg on day 1 and i.v. mitoxantrone To evaluate efficacy and safety of DN-101 The addition of DN-101 does not appear to 64
12 mg/m2 on day 2 every 21 days with daily combined with mitoxantrone and increase the toxicity of mitoxantrone in
prednisone 10 mg orally for a maximum of 12 cycles glucocorticoids in AIPC AIPC.

25 patients Oral 1,25(0OH),D; 0.5 pg/kg on day 1, followed by To assess safety and efficacy of weekly Weekly oral intake of 1,25(OH),D; and 67
docetaxel 36 mg/m2 i.v. on day 2 per week for three high-dose oral 1,25D3 and docetaxel in docetaxel might prevent pancreatic cancer
consecutive weeks, followed by 1-week non-treatment patients with non-resectable, incurable progression.

pancreatic cancer

18 patients i.v. 1,25(OH),D; weekly at a dose of 74 pg and CRPC treatment and prevention 1,25(0OH),D3 supplement did not achieve 68
dexamethasone in patients with CRPC favorable clinical outcomes.

953 patients ASCENT (45 pg DN-101, 36 mg/m2 docetaxel, and To compare the efficacy and safety of ASCENT treatment decreased prostate cancer 71
24 mg dexamethasone weekly for 3 of every 4 weeks); docetaxel plus DN-101 to docetaxel survival compared with control.
control (5 mg prednisone twice daily with 75 mg/m2 plus prednisone in a phase III trial
docetaxel and 24 mg dexamethasone every 3 weeks)

66 patients Daily oral supplementation of vitamin D (400, 10,000, or Ki67 staining in prostate cancer tissue Vitamin D intake decreased Ki67 level in 88
40,000 IU per day) prostate cancer tissue.

23 patients Oral administration of 0.5 pg/kg 1,25(0OH),Dj3 in To evaluate the efficacy and safety of Prostate-specific antigen response was 89
4 divided doses over on day 1 of each treatment week, combination of high dose 1,25(0OH),D3, detected.
docetaxel 36 mg/m?2 i.v. infusion on day 2 of each docetaxel and zoledronic acid in CRPC
treatment week and zoledronic acid 4 mg i.v. on day
2 of the first and fifth week of each cycle

54 patients Inecalcitol at eight dose levels (40-8000 pg) daily Prostate cancer treatment and prevention Inecalcitol in combination with docetaxel 86
combined with docetaxel encouraged PSA response of prostate cancer.

1107 patients 0.5 pg 1,25(0OH),D; plus 75 mg acetylsalicylic acid and Adenoma recurrence after three-year Supplement with 1,25(OH),D; did not reduce 90
1250 mg calcium carbonate (n = 209), or placebo treatment the risk of CRC recurrence.

(n = 218)

64 cases and 64 controls Diclofenac sodium 3% gel, 1,25(0OH),D; 3 pg/g ointment BCC progression Combination of diclofenac and 1,25(0OH),D; 91

treatment inhibited BCC proliferation.

104 CRC patients Calcium (1200 mg daily) alone, vitamin D (1000 IU APC/f-catenin pathway in normal Vitamin D intake significantly suppressed 92
daily) alone and in combination or placebo colorectal mucosa APC/f-catenin pathway.

2259 participants with Daily oral 1000 IU vitamin D or 1200 mg calcium Colon adenoma recurrence Vitamin D prevented colon cancer recurrence 93

colon adenoma

carbonate, or both or placebo

among individuals with AA genotype in
VDR 157969585 polymorphism.

AIPC, androgen-independent prostate cancer; ASCENT, AIPC Study of Calcitriol Enhancing Taxotere; BCC, basal cell carcinoma; CRPC, castration-resistant prostate cancer; DN-101, a new high-dose oral
formulation of 1,25(OH),Ds; i.v., intravenous administration; PSA, prostate specific antigen.

80T

‘8 19 npp Y



Repurposing vitamin D for treatment of human malignancies

209

2.4.  Vitamin D-related gene polymorphism

Polymorphisms in genes related with vitamin D metabolism, includ-
ing VDR, CYP27Al, CYP27BI, CYP24Al and GC, have been
associated with cancer risk and progression, and may function as a
valuable factor in cancer prognosis. Here, we summarized the
epidemiological and genetic studies performed in recent years
depicting the association of gene polymorphisms with cancer risk,
progression and prognosis in Table 2773717,

A meta-analysis revealed that Bsm I, Apa I, Fok I and Poly
(A) polymorphisms in VDR gene might be related to breast cancer
progression''*. Another study which involved 3336 incident
primary melanoma cases found that VDR single nucleotide
polymorphisms (SNPs), rs1544410/Bsm 1 and rs731236/Taq 1,
significantly correlated with melanoma survival among subjects
exposed to high UVB''". A case-control study including 528 CRC
patients and 605 cancer-free controls and a follow-up study with
317 cases, which were conducted in northeast China, suggested
that two polymorphisms in CYP27B1 (rs10877012 and rs4646536)
are associated with decreased CRC risk while CYP24A1
(rs4809957) polymorphism might lead to a worse prognosis of
CRC™. 1t was also reported that the CYP24A] variant 1s964293
modulated the association between combined oestrogen-
progestogen (E+P) hormone therapy and CRC risk, suggesting
the important role of CYP24Al polymorphism in cancer progres-
sion’’. Equal importantly, GC polymorphisms might be a pre-
dictive marker for outcome of chemotherapies. AA genotypes of
GC 154588 polymorphism was strongly associated with longer
overall survival in CRC patients with treatment of irinotecan/
cetuximab, whereas treatment with irinotecan/bevacizumab were
associated with the converse'”’. These data support the use of
specific gene polymorphisms as potential markers for cancer risk
and cancer mortality.

3. Mechanisms of action of vitamin D within the tumor
microenvironment

The antitumor activity of 1,25(OH),D3, the active form of vitamin
D, has been widely studied in a number of cancer types. By
binding to VDR, 1,25(0OH),Dj; exerted antitumor efficacy through
regulating target gene expression or nongenomic actions related to
different signaling pathways in both normal cancer cells and
cancer stem cells. The anticancer actions of 1,25(OH),D5 include
the induction of cell cycle arrest, cell differentiation, cell apopto-
sis, autophagic cell death, as well as inhibition of metastasis tumor
angiogenesis. Importantly, vitamin D could modulate stromal cells
to suppress tumor angiogenesis, progression and metastasis in
TME. Recent studies also demonstrate an anti-inflammatory role
of vitamin D within TME. The schematic illustration of mechan-
isms related to the anticancer action of vitamin D within the TME
is shown in Fig. 3.

3.1.  Tumor cells

3.1.1.  Regulation of proliferation

1,25(0OH),D; has been found to inhibit cell proliferation through
cell cycle arrest in most cancer cells, which plays an important role
in cancer preventionm. The effect of 1,25(0OH),D3 on cell cycle
distribution was mainly dependent on induction of p21 and p27
expression. p21 and p27 were identified as the targets of
1,25(0OH),D; and were critical for G1 phase cell cycle arrest and

inhibition of cancer cell proliferation'>”'?'. It was reported that the
activation of JNK and ERK1/2 MAPK signaling pathways by
1,25(0OH),D5 were required for the induction of p21 expressionlzz.
Notably, p53 was involved in the regulation of p21 by
1,25(0OH),D;5. There were multiple binding sites for p53 located
in the promoter of p2l1 to cooperate with VDR to regulate
transcriptional activity of p21'*°. We recently found that
1,25(0OH),D;5 can induce p2lexpression and G1 phase cell cycle
arrest in a mutant p53 and VDR dependent manner in gastric
cancer cells?”. At the meantime, p27 could up-regulated by
1,25(0OH),D5, although no canonical VDR element (VDRE) was
identified in the p27 promoter'*®. It is demonstrated that VDR
could not directly bind to the p27 promoter but interacts with spl
to regulate the promoter activity of p27'*. Also, 1,25(0H),Ds
up-regulated p27 expression through inhibition of Thrl187
phosphorylation-dependent degradation in prostate cancer and
increase the stability of p27 through down-regulation of ubiquitin
pathway in ovarian cancer.'**'* Furthermore, some other cyclin-
dependent kinase inhibitors such as p15 and p16 may be induced
by 1,25(01_1)2]33121,12(»,127.

3.1.2.  Induction of apoptosis

1,25(0OH),D5 can induce cell apoptosis in several cancer cells,
mainly in breast, prostate and squamous carcinoma cells, effects
which often require lengthy exposures to 1,25(OH),Ds.
1,25(0OH),D5-mediated cell apoptosis was demonstrated to be
through mitochondrial-dependent pathway, in which the release
of cytochrome c and the protein of BCL-2 family were involved,
resulting in the suppression of the anti-apoptotic protein (BCL-2,
BCL-XL) and the induction of the apoptotic protein (such as BAX,
BAK, BAD)77’]18_13 2 In addition, a study demonstrated that
1,25(0H),D; could induce apoptosis in ovarian cancer cells
through down-regulation of telomerase activity and telomerase
reverse transcriptase (hTERT) expression after 6 days treatment
with 1,25(OH),D3;, contributing to shortening the telomere
length'**'**, It was also found that suppression of hTERT
expression by 1,25(0OH),D; was regulated by microR-498, show-
ing that microRNA played an important role in vitamin D
regulation in cancers'**'**, This sheds light on a new perspective
in 1,25(0OH),D3-induced cancer cell apoptosis. At the meantime,
1,25(0OH),D5 could accelerate chemotherapeutics-induced apopto-
sis, thus enhancing the antitumor activity of chemotherapeutic
drugs such as paclitaxel, gemcitabine and dexamethasone'>~'?%,
In in vitro studies, it has been reported that vitamin D, in synergy
with cisplatin, the histone deacetylase inhibitor trichostatin A,
sodium butyrate or the methylation inhibitor 5-aza-2’-deoxycyti-
dine, could induce apoptosis in gastric cancer cells'**'*". This
indicated that 1,25(OH),D3, the normal dietary supplement, could
be considered for combination treatment for cancer.

3.1.3.  Induction of differentiation

Induction of differentiation has been reported to involve in
1,25(0OH),D;-induced cancer suppression. 1,25(0OH),D; is con-
sidered as a differentiating agent for leukemia cells. It could
promote myeloid leukemia cells differentiating into mature mye-
loid cells, and has been used in clinical trials for acute myeloid
leukemia'*"'*?. Furthermore, 1,25(0OH),D; can induce differentia-
tion in cancer cells, mostly in colon cancer, through repression of
WNT/p-catenin signaling. Activation of WNT/f-catenin signaling
is commonly found in colon cancer, and is associated with

undifferentiated properties and malignance of cancers'®.



Table 2  The association of vitamin D-related gene polymorphisms with cancer risk or mortality.
Gene Polymorphism Study Main finding Ref.
CYP27B1 1510877012 (G > T); rs4646536 A follow-up study with 528 CRC patients and 605 cancer-free controls Reduced CRC risk in GG carriers of rs10877012 and CC genotype of 94,95
(C>1) 1s4646536; higher CRC risk in GT + TT carries of rs10877012
CYP27A1 154674343 (G > A); rs6436086 1260 men with prostate cancer and 1331 controls Positive association of rs4674343 and rs6436086 with prostate 96
(T > 0O cancer risk
1$964293 10,835 postmenopausal women (5419 CRC cases and 5416 controls) Modify the association between combined oestrogen-progestogen 97
hormone treatment and CRC incidence
1s6068816; rs2181874 426 NSCLC cases and 445 controls from China Reduction of NSCLC susceptibility by rs6068816 in both smokers and 98
non-smokers; reduction of NSCLC risk in smokers with mutated
homozygous rs6068816; increased NSCLC risk in those with mutated
homozygous rs2181874
rs4809957 (A > G) 528 CRC cases and 605 cancer-free controls in northeast China Worse prognosis of CRC patients with CYP24A1 A>G (rs4809957) 94
152296241 582 ESCC patients and 569 controls in a Northern Chinese population Positive correlation between ESCC and rs2296241 99
GC rs12512631; rs2239182 3566 primary melanoma cases Longer cutaneous melanoma overall survival in those with 100,101
rs12512631 and rs2239182 in GC
rs7041 426 NSCLC cases and 445 controls from China; 1777 breast cancer  Significant association of decreased NSCLC incidence with rs7041; 98,102
cases and 1839 controls increased risk of breast cancer in rs7041 TT genotype
rs4588 522 metastatic CRC patients Longer CRC patients overall survival in AA carriers of rs4588 103
VDR rs11568820 1598 patients with stage I to III CRC Interaction of rs11568820 genotype with serum 25(OH)D concentration, 104
modulating the risk for CRC-specific and all-cause mortality
1s7299460 493 pancreatic cancer patients from five prospective US cohorts Better pancreatic cancer prognosis in rs7299460, while no interaction 57
with pancreatic cancer risk
Apa I 340 patients (201 chronic hepatitis, 47 cirrhosis and 92 HCC) and Association of CC genotype in Apa I with HCC progression 105
100 healthy controls
Apa I 302 RCC patients and 302 healthy controls Increased susceptibility of RCC in AA and AC genotypes in Apa I 106
variants compared with CC genotypes in Chinese populations
152228570/Fok 1 378 participants: 78 CRC cases and 230 non-cancer controls 1s2228570/Fok I associated with CRC risk in African American 107
populations
1s2228570/Fok 1 Meta-analysis including 9720 prostate cancer patients and 9710 1s2228570/Fok I correlated with prostate cancer risk and progression 108,109
control subjects; 10,486 prostate cancer cases and 10,400 controls in Caucasian
rs2228570/Fok I (C>T) Meta-analysis with 209 tobacco-related cancers (cases) and Increase risk of smoking-related cancers in AA genotype of Fok 110
418 controls I polymorphism
rs2228570/Fok I (C>T) 1820 white ovarian cancer cases and 3479 controls; 4152 cases and  Association of risk of ovarian cancer with rs2228570/Fok I 111,112
6693 controls of Caucasian populations
rs1989969 330 cases and 608 controls Association with increased gastric cancer risk and development, 113
especially in the younger and alcohol drinking Chinese population
Bsm I; Apa [; Fok I; Poly (A)  Meta-analysis with 26,372 breast cancer cases and 32,883 controls Significant association with breast cancer susceptibility 114
187975232/Apa I; 100 cases of Egyptian females with breast cancer; 498 patients with  Strong correlation of ATT genotype in Apal and Tagl polymorphism 115,116

rs731236/Taq 1

breast cancer with a mean age at diagnosis of 61 years from
Saarland, Germany

with susceptibility of breast cancer carcinogenesis in Egyptians
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1,25(OH),D5s-induced VDR translocation can bind f-catenin to the
VDRE of vitamin D target genes, thereby inhibiting the transcrip-
tional activity of WNT downstream targets'**. It was also found
that 1,25(OH),D; inhibited WNT/f-catenin signaling through
induction of E-cadherin and the WNT inhibitor DKK1 in colon
cancer cells, functioning as a multilevel suppressor of WNT/f-
catenin signaling pathway'*~'*°. E-cadherin is associated with
epithelial phenotype of cancer cells and loss of E-cadherin causes
invasiveness of cancer cells. Induction of E-cadherin and other
differentiated epithelial marker ZO-1 by 1,25(OH),D5 and inhibi-
tion of WNT/f-catenin downstream targets such as c-Myc and
cyclin D finally restrain the cancer cell differentiation, which is
also associated with tumor angiogenesis, migration and invasion.

117
118
119

93

3.1.4.  Inhibition of angiogenesis and metastasis

The vitamin D signaling pathway is also associated with tumor
angiogenesis, which is one of the mechanisms contributing to the
anticancer action of 1,25(OH),Dj;. Vascular endothelial growth
factor (VEGF) is a growth factor that stimulates the formation of
blood vessels, and its overexpression in cancer cells promotes
angiogenesis and metastasis'”". Suppression of hypoxia-inducible
factor 1 (HIF-1a)-mediated VEGF expression and signaling by
1,25(0OH),D; was detected in many kinds of cancer cells including
prostate, breast and colon cancers'”'"'>, NF-xB signaling, the
nuclear protein Forkhead box M1 (FOXMI1) and DKK4 have
been suggested to mediate the anti-angiogenesis effects of
1,25(0OH),Ds. It was found that 1,25(OH),D; inhibited angiogen-
esis through reduction of NF-«xB mediated interleukin-8 (IL-8)
secretion in prostate cancer cells'”'. Treatments with
1,25(OH),D5 or the vitamin D analogue EB1089 or activation of
VDR remarkably suppressed pancreatic ductal adenocarcinoma
cells proliferation, self-renewal abilities and metastasis through
down-regulation of FOXM1. The latter is an oncogene that plays a
key role in cell cycle regulation and carcinogenesis'>>. In addition,
DKK4, a known downstream target of vitamin D signaling and an
inhibitory Wnr ligand, was reported to inhibit tumor angiogenesis,
migration and invasion in colon cancer cells in vitro. These
findings further support the anti-angiogenesis and anti-
invasiveness roles for vitamin D in cancer prevention'*’. Finally,
1,25(0OH),D; also suppressed epithelial-mesenchymal transition of
SKOV-3 ovarian cancer cells through reduction of Slug and Snail
and upregulation of E-cadherin, thus resulting in the inhibition of

migration and invasion of SKOV-3 cells'**.

rs7975232/Apa I polymorphisms; Correlation of lung cancer mortality

exposed with high UVB
with rs2228570/Fok I polymorphism

A population-based cohort of 531 CRC patients in Newfoundland and Significant correlation with the overall survival of CRC patients;
genotype of rs7968585

Associated of cancer prognosis with rs1544410/Bsm I and

the A-allele
Reduced colorectal cancer recurrence risk among patients with AA

Positively association with favorable overall survival melanoma patients
Decreased overall survival in the G-allele in rs1544410 compared with

United States including 2259 participants
Meta-analyses with total 44,165 cases from 64 studies

Labrador, Canada

3.1.5.  Induction of autophagy

Induction of autophagy by vitamin D was initially studied in the
immune system. Vitamin D can induce autophagy in many kinds
of immune cells through the host defense peptide LL37 for

A randomized clinical trial conducted at 11 clinical centers in the

3336 incident primary melanoma cases

§ — bacteria eradication. Accumulating evidences (best substantiated

§ s in breast cancer) indicates that vitamin D, as well as its analogue
o 2 [% EB1089, suppresses cancer progression through autophagic-
E g E g § induced cell death. Initially, it was found that EB1089 triggers
@ S A @ Q massive autophagy in MCF-7 breast cancer cells by upregulating
ESE A 3 2 the tumor suppressor gene Beclin-1, thereby inducing breast
SN s g = T& cancer cell death”’. Recent evidence showed that the vitamin D-
Vé “ % % Vé . induced autophagic effect was found specifically in luminal-like

breast cancer cells and benefited a lot in combination with
hydroxychloroquine (HCQ), an inhibitor of autolysosome acidifi-
cation for suppression of breast cancer growth in vivo'>>. Studies
also indicated that the autophagy produced by either vitamin D or
its analogue EB1089 could also modulate radiation sensitivity in

CRC, colorectal cancer; ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; GC, vitamin D binding protein; NSCLC, non-small cell lung cancer; RCC, Renal Cell Carcinoma;

VDR, vitamin D receptor.
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Figure 3 Mechanisms of anticancer action of vitamin D within tumor microenvironment (TME). The active form of vitamin D, 1,25(OH),D3, not
only suppresses cancer cell growth, but also regulates a range of stromal cells, including cancer-associated fibroblasts, tumor-derived endothelial
cells, cancer stem cells and infiltrating immune cells, within TME to facilitate cancer suppression. 1,25(0OH),D5 also exhibits anti-inflammatory
effect within TME. The representative signal transduction pathways are displayed.

breast cancer and non-small cell lung cancer (NSCLC) cells.
Vitamin D or EB1089 increased radiation efficiency through
promotion of autophagy in p53 existing breast cancer'”® and
NSCLC cells'”” but not in p53-null cells, which indicates an
important role of p53 in vitamin D-induced autophagy. Above all,
vitamin D functions as an autophagic switch in human health
maintenance and various types of cancer resistance, providing a
novel perspective by magnifying the radiation responses in human
malignancies.

3.1.6. Nongenomic effect

Nongenomic actions of 1,25(OH),D5 are rapid and not dependent
on VDR-mediated transcriptional activation (Fig. 2), recently
reviewed by Hii and Ferrante'>®. The most well-established
nongenomic effect of 1,25(OH),D; is the rapid intestinal absorp-
tion of Ca®". It has been demonstrated that alteration of
intracellular Ca®" homeostasis is associated with tumor initiation,
angiogenesis, progression and metastasis'>”. Based on this, a new
mechanism of 1,25(OH),Dj; in regulation of E-cadherin has been
found in colon cancer cells. Rho-ROCK-p38MAPK-MSKI1 activa-
tion was mediated by 1,25(OH),D;-induced upregulation of
cytosolic Ca>* concentration ([Ca“]cyt), which was required for
genes expression of CYP24A1 and E-cadherin'®. In squamous
cell carcinoma cells, 1,25(0OH),D5 provoked apoptosis through the
rapid nongenomic activation of PI3K/Akt/ERK1/2/MAPK signal-
ing and inhibition of the anti-apoptotic protein cIAP and XIAP'®'.
These findings dual actions of VDR and expands the

understanding that the nongenomic activation of VDR might
synergize with the VDR-dependent genomic pathway to produce
antitumor effect of 1,25(0OH),D5.

3.2.  Stromal cells

The tumor stroma cell is one important part of developing tumor
microenvironment, promoting expansive proliferation, metastatic
capacities and chemoresistance of solid tumors. Stroma cells
contain many cell types including epithelial cells, tumor-
associated fibroblast, tumor-derived endothelial cells and infiltrat-
ing immune cells. More and more studies show that different
stromal cells types in tumor microenvironment influence a lot of
hallmarks of cancer. For example, endothelial cells trigger tumor
angiogenesis, while cancer-associated fibroblasts (CAFs) are
involved in activating tumor invasion and metastasis, proliferation
and in resisting cell death'®*'%’. Emerging evidence suggests that
vitamin D participates in modulating the gene signature of tumor
stroma cells to regulate tumor angiogenesis, progression, and
metastasis. Such findings suggest that vitamin D is a promising
therapeutic for cancer.

3.2.1. Tumor-derived endothelial cell

Both in vitro and in vivo studies have demonstrated that 1,25(OH),D5
is able to inhibit tumor derived endothelial cells (TDECs). It is reported
that 1,25(0OH),D; and its analogs inhibited TDECs proliferation
without affecting normal aortic endothelial cells at concentrations
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comparable to those required to suppress cancer cells'>>'**. Recently,
emerging evidence showed that 1,25(0OH),D5 repressed tumor angio-
genesis in some in vivo models such as the TRAMP-2 prostate tumor
models and breast cancer models. 1,25(OH),D; inhibited TDECs in
TRAMP-2 tumor with wild-type VDR but not in VDR knockout mice
and enhanced tumor blood vessel density in VDR-knockout mice
when compared with tumors from wild-type mice'®. These results
indicate the importance of VDR signaling on TDECs in the regulation
of prostate cancer angiogenesis. It should be noted that 1,25(OH),D3
could induce apoptosis of VEGF sprouting endothelial cells, thereby
decreasing the blood vessel density in breast cancer xenograft
tumors>>'°°, Therefore, 1,25(0H),D; may function as an important
regulator in alteration of pathologic angiogenesis to regulate the tumor
microenvironment.

3.2.2.  Cancer-associated fibroblast

The effect of 1,25(OH),D5; on CAFs has been mainly investigated
in pancreatic adenocarcinoma (PC) and CRC. VDR overexpres-
sion was found in tumor stromal cells of PC including pancreatic
stellate cells (PSCs) existing in the extracellular matrix and
CAFs'?. 1,25(0H),D; suppressed pancreatic cancer metastasis
through inhibiting secretion of metastasis supportive factors in
PSCs including the WNT ligand (WNT2B), Notch receptor
(JAG1), cytokines (IL6) and growth factors'®. In a recent report,
the activation of vitamin D signaling pathway in pancreatic CAFs
suppressed the transmission of certain exosomal oncomiR such as
miR-10a-5p from CAF to PC cells and thus diminished its
protumoral effects on PC cells'®’, which provided a new perspec-
tive on how vitamin D regulates CAFs. Furthermore, it is reported
that 1,25(OH),D5 exhibited protective effect against CRC through
inhibiting CAFs independently of VDR expression in CRC cells,
while higher VDR expression in CAFs predicted longer overall
survival in CRC patients'®®. Although promising results have been
achieved on the regulation of CAFs by vitamin D, the underlying
mechanisms remain to be evaluated, especially in different
cancer types.

3.2.3.  Tumor-infiltrating lymphocyte

Recently, a number of clinical and preclinical studies showed that
tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment
play a significant role in cancer progression or tumor suppression and
may be identified as a new therapeutic target for cancer treatment.
Effects of vitamin D on immune cells has been well studied, especially
in host defense against bacteria such as the clearance of Mycobacterum
tuberculosis. It was reported that the antibacterial activity of vitamin D
on M. tuberculosis was mediated by autophagy through the upregula-
tion of LL37 and the activation of Beclin-1 and ATGS in monocytes
and macrophage'®'”°. Vitamin D supplements promoted INF-y related
antimicrobial effects of human macrophages'’'. On the other hand,
vitamin D plays a significant role in adaptive immunity, and vitamin D
deficiency might disrupt CD8 effector differentiation and the response
of memory CD8 T cells for viral or bacterial infection in mice'’*. Tt
was also found that vitamin D-induced tolerogenic dendritic cells (DC)
increased population of CD4+tCD25 Foxp3™ T cells, CD4TIL-10" T
cells, and CD19"CD5"CD1d* B cells, resulting in attenuated
experimental autoimmune encephalomyelitis'’*. Moreover, vitamin D
induced regulatory T cell (Treg/Th17) differentiation through TGF-f
signaling in a VDR-dependent manner, which indicated that vitamin D
uptake might benefit for organ transplantation recipients'’*. Sun et
al.'” found that vitamin D could modulate TL-17 and RANKL
expression through VDR-mediated NF-«xB signaling, resulting in the

inhibition of Th17 cell differentiation in both in vitro and mice models.
Vitamin D indeed plays an important role in both innate and adaptive
immune responses. There is increasing evidence related to the
important role of vitamin D on immune cells such as DC, NK cells,
T cells, B cells as well as TILs in cancer and inflammation. For
example, vitamin D can modulate tumor cell sensitivity to NK cells
through suppression of miR-302c and miR-520c in breast cancer cells,
resulting in increased NK cells-induced cytotoxicity and decreased
breast cancer cell viability'’°.

PD-1 and PD-L1 function as blockers of immune responses and
anti-PD-1 immunotherapy achieves rapid and effective treatments
on a variety of cancers. Although PD-L1 suppresses the anti-tumor
activity of T cells through immune checkpoint blockade, the anti-
immunity role of PD-L1 might show protective effect in inflam-
mation. It was found that vitamin D directly induced PD-L1 and
PD-L2 expression in human epithelial cells and myeloid cells and
treatment with vitamin D significantly suppress the inflammatory
cytokine expression'’’, suggesting the anti-inflammatory role of
vitamin D in immune responses and the protective role of vitamin
D by reducing human malignancy initiation. One phase 1B study
including patients with head and neck squamous cell carcinoma
indicated that daily oral administration of vitamin D metabolite
25(0H)D; decreased immune suppressive cells CD34* population
and had favorable immune responses including promoting T-cell
blastogenesis and HLA-DR expression'’®. As the functional role
of vitamin D in cancer immunotherapy is still limited, more studies
on vitamin D in anti-cancer immunity are needed. Since cancer
immunotherapy is now becoming a hot topic and benefits
increasing number of cancer patients worldwide, it is expected
that vitamin D might enhance cancer immunoprevention and
increase the activity of immune cells to kill cancer cells.

3.3.  Cancer stem cells

Cancer stem cells (CSCs) or tumor initiating cells (TICs) are
critically responsible for tumorigenesis, progression, metastasis,
and tumor recurrence, but they account for only a small proportion
of cancer cells. Regarding the important role of the low-proportion
CSCs in cancer microenvironment, targeting CSCs might be an
efficient and promising method for cancer suppression. Recent
studies have demonstrated that vitamin D may suppress cancer
progression through targeting CSCs compartment. The role of
vitamin D in regulating CSCs in gastrointestinal cancers has been
thoroughly reviewed in our previous report'”?. Here we further
summarized the suppressive action of vitamin D on CSCs in other
cancers such as breast and prostate cancers.

In breast cancer, CD44 was identified as a breast cancer stem cell
marker and CD44"/CD247" cells and CD49f"/CD24™"*Y were
identified as tumor-initiating cells'*’. In MCF10A ductal carcinoma
in situ (DCIS) cells, CD44 was significantly down-regulated by a
Gemini vitamin D analog, BXL1024'%’, BXL1024 reduced the breast
cancer stem-like cells population including CD44+/CD247°% and
CDA49f/CD24"" subpopulation of MCFI0A DCIS cells, and
suppressed the stem cell markers expression (CD44 and CD49f)'®’.
Further study has shown that the suppressive effect of 1,25(OH),D5 or
its analogue on breast CSCs in MCF10A DCIS was dependent in
Hesl-mediated inhibition of Notch signaling'®'. In mammosphere,
OCT4 and KLF4, which is associated with stem cell self-renewal and
undifferentiated phenotype, were reduced by 1,25(0H),D; or
BXL1024'%. 1t is reported that another vitamin D analogue EB1089
in cooperation with BRAC1 exhibited anti-mammosphere formating
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ability in breast cancer cells'®®. Notably, Jeong et al.'®* found that

1,25(OH),D; or oral administration with vitamin D could inhibit
mouse TICs in MMTV-WNT1 mammary tumors through WNT/S-
catenin signaling in vivo. 1,25(OH),D; inhibited spheroids formation of
mouse TICs in 3D tumor spheroid culture assay in vitro'™'. However,
some studies showed that VDR was down-regulated in breast cancer
mammosphere, potentially indicating less vitamin D action on breast
CSCs'#1%5 Despite the controversy, the current findings still provided
a new strategy for vitamin D targeting breast CSCs and give us a
deeper understanding of vitamin D effect in cancer.

Although the anticancer effect of vitamin D on prostate cancer
cells has been widely explored both in vitro and in vivo, the exact
pharmacological action of vitamin D on prostate CSCs is not well
understood. Existing evidence showed that the mechanism
involved in the regulation of prostate CSCs by vitamin D was
partly similar to that of prostate cancer cells. Maund et al.'®
demonstrated that 1,25(OH),D; could induce p21 and p27
expression as well as cell cycle arrest in mouse prostate CSCs,
and its anti-proliferative effect was mainly mediated by upregula-
tion of IL-1a. In addition, the micro-array data indicated that the
CSCs signaling (e.g., BMP and TGF-f) participated in the
regulatory action of 1,25(OH),D; on prostate CSCs'®®. Taken
together, the mechanisms underlying vitamin D regulation of
CSCs seem similar to that of normal cancer cells, i.e., mainly
through WNT/f-catenin, BMP, Notch and TGF-f signaling
mechanisms.

3.4. Inflammatory mediators

Inflammation plays an important role in tumorigenesis'®’. Studies
have indicated that vitamin D exhibits anti-inflammatory effects
within TME to inhibit cancer initiation and progression'®®, Animal
studies showed that dietary supplement of vitamin D significantly
decreased colon cancer incidence in mice, which might be due to
the decrease of MAPK and NF-xB signaling as well as the
reduction of pro-inflammatory cytokines in colonic epithelial
cells'®. Tt is reported that 1,25(OH),D3 may restrain inflammatory
progression through downregulation of MMP-3, INOS and COX-2
levels and upregulation of inflammatory mediators including IL-
15, IL-6, IL-8, and prostaglandins (PGs) in macrophage'®'"".
COX-2 1is involved in pathogenesis of many inflammatory
diseases'”?, and 1,25(OH),Dj is able to decrease COX-2 expres-
sion in many kinds of cancers such as breast cancer, colon cancer,
ovarian cancer and prostate cancer, thereby suppressing cancer
growth'”*™'°_ In a clinical trial, higher levels of vitamin D were
correlated with lower COX-2 level in prostate cancer cells and
stroma cells'””. Moreover, inflammatory factors including TNF-q,
IL-6 and IL-8 were significantly inhibited by 1,25(OH),D3 in
prostate primary epithelial cells, indicating the beneficial role of
anti-inflammatory action of vitamin D in prostate cancer'®’. Above
all, vitamin D exerts anti-inflammatory effects through suppression
of the production and action of inflammatory mediators such as
cytokines, chemokines and PGs, and inhibition of MAPK and NF-
kB signalings in cancer cells, macrophages as well as the epithelial
cells, all of which might contribute to the prevention of cancer
progression and inflammatory progress.

4. Conclusions/perspectives

Accumulating evidence strongly supports the notion that vitamin
D deficiency is associated with elevated cancer risk and poor

prognosis. Vitamin D supplementation can exert profound sup-
pression of cancers, in particular via targeting components of the
TME. Importantly, the emerging role of vitamin D in the
regulation of the TME provides a mechanistic basis for its
potential efficacy in treating cancer. Although the preclinical and
epidemiologic data are persuasive and provide supportive evidence
for continued development of vitamin D or its analogues for
cancer therapy, no well-designed clinical trial of vitamin D has
been carried out. In particular, the optimum dosage of vitamin D
supplementation to reduce cancer risk or treat cancer is still
unclear. Future clinical trials that treat cancer patients with suitable
doses of vitamin D, or new analogues as well as combination
therapy may finally demonstrate the promise for use of a classical
vitamin with low and known toxicity in humans. Such results may
lead to the development of an effective medicine for the prevention
and treatment of malignancies in an economical and efficient
manner.
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