Vitamin D in pregnancy and early life -implications for the mother and child

Elina Hyppönen, MSc, MPH, PhD
Reader in Epidemiology and Public Health

UCL Institute of Child Health, London, UK
Correspondence to: e.hypponen@ich.ucl.ac.uk
Vitamin D 'reduces risk of diabetes'

November, 2001
Vitamin D 'reduces risk of diabetes'
November, 2001

Vitamin D reduces heart risk
February 2002
Vitamin D 'reduces risk of diabetes'
November, 2001

Vitamin D reduces heart risk
February 2002

Sun’s rays are good for the brain
February 2002
Vitamin D 'reduces risk of diabetes'
November, 2001

Vitamin D reduces heart risk
February 2002

Sun’s rays are good for the brain
February 2002

Sunshine “prevents cancer”
February 2002
Vitamin D 'reduces risk of diabetes'
November, 2001

Vitamin D reduces heart risk
February 2002

Sun’s rays are good for the brain
February 2002

Sunshine “prevents cancer”
February 2002

Vitamin D boosts cancer treatment
July 2003
Vitamin D 'reduces risk of diabetes'
November, 2001

Vitamin D reduces heart risk
February 2002

Sun’s rays are good for the brain
February 2002

Vitamin D pills cut MS risk
November 2004

Sunshine “prevents cancer”
February 2002

Vitamin D boosts cancer treatment
July 2003
Vitamin D 'reduces risk of diabetes'
November, 2001

Vitamin D reduces heart risk
February 2002

Sun’s rays are good for the brain
February 2002

Vitamin D pills cut MS risk
November 2004

Sunshine “prevents cancer”
February 2002

Vitamin D key for healthy lungs
December 2005

Vitamin D boosts cancer treatment
July 2003
Vitamin D 'reduces risk of diabetes'
November 2001

Vitamin D reduces heart risk
February 2002

Sun’s rays are good for the brain
February 2002

Vitamin D pills cut MS risk
November 2004

Sunshine “prevents cancer”
February 2002

Vitamin D makes stronger babies
January 2006

Vitamin D key for healthy lungs
December 2005

Vitamin D boosts cancer treatment
July 2003
Vitamin D pills cut MS risk

November 2004

Vitamin D 'reduces risk of diabetes'

November, 2001

Vitamin D makes stronger babies

January 2006

Vitamin D key for healthy lungs

December 2005

Vitamin D reduces heart risk

February 2002

Sun's rays are good for the brain

February 2002

Sunshine prevents cancer

February 2002

Vitamin D boosts cancer treatment

July 2003

2006

One Vitamin That Can Save Your Life

Reader's Digest

Great Bargains 2003

PAY LESS

Get Everything

Why You Need This Healing Vitamin

Rethinking Race, Racism & Fairness

The West Nile Epidemic • Survival at Sea

Humor in Uniform: Bob Hope’s 100th Birthday
Vitamin D

- Nutrient and pro-hormone

- Vitamin D receptors found from most tissues and organs of the body
 - Bone
 - Brain
 - Breast
 - Deciduas
 - Heart
 - Immune cells
 - Placenta
 - Pancreas
 - Prostate
 - Etc.
Vitamin D

- Nutrient and pro-hormone
- Vitamin D receptors found from most tissues and organs of the body
 - Bone
 - Brain
 - Breast
 - Deciduas
 - Heart
 - Immune cells
 - Placenta
 - Pancreas
 - Prostate
 - Etc.
Proposed health effects of vitamin D

Regulation of calcium metabolism
- Rickets, Osteomalacia
- Osteoporosis
- Fractures

Immunomodulatory effects
- Type 1 diabetes
- Multiple Sclerosis
- Psoriasis
- Arthritis
- Inflammatory Bowel disease
- Pre-eclampsia
- Allergic diseases

Cardiovascular effects
- Hypertension
- Metabolic syndrome
- CVD
- Heart failure

Cell growth and regulation
- Cancer risk
 (prostate, colon, breast etc.)

Holick M. NEJM 2007
Proposed health effects of vitamin D

Regulation of calcium metabolism
- Rickets, Osteomalacia
- Osteoporosis
- Fractures

Immunomodulatory effects
- Type 1 diabetes
- Multiple Sclerosis
- Psoriasis
- Arthritis
- Inflammatory Bowel disease
- Pre-eclampsia
- Allergic diseases

Cardiovascular effects
- Hypertension
- Metabolic syndrome
- CVD
- Heart failure

Cell growth and regulation
- Cancer risk
 (prostate, colon, breast etc.)

Holick M. NEJM 2007
Immunological link between vitamin D and miscarriage/pregnancy complications?

Pregnancy as an immunological challenge
- Fetus is an allogenic tissue graft carrying paternally derived antigens.
- Immunological adaptation by a sift towards a domination by the T helper type 2 (Th2) cytokine response required for the maintenance of normal pregnancy
 - Th1 type reaction in the placenta correlated with spontaneous preterm delivery and miscarriage, possible role in pre-eclampsia

Vitamin D - Immunomodulatory properties
- Active vitamin D attenuates Th1-mediated immune response
 - Reduces secretion of INF-γ, IL-2, IL-12
- Affects dendritic cell maturation
- Affects regulatory T-cell activity

Vitamin D may be able to prevent the immune maladaptation and loss of tolerance in pre-eclampsia / miscarriage?

Hyppönen. NutrRev,2005
NORMAL PREGNANCY

- Th2 domination

- Expressed in macrophages, placenta and deciduas.

- Levels increased from early pregnancy.

- Expressed in placenta and deciduas.

- Required for normal reproduction.

PRE-ECLAMPSIA

- Th1 overexpression

- Altered expression/activity in pre-eclampsia?

- Pre-eclampsia associated with genetic variations in VDR?

- Levels decreased compared to normal pregnant controls.

- Expression and activity is restricted

- Levels decreased

- Incidence mirrors seasonal variations in vitamin D status

Vitamin D intake

Vitamin D receptor (VDR)

1α-hydroxylase

25(OH)D

1,25(OH)_2D

Immunological tolerance

Immunomodulation

Vitamin D intake

Hyppönen. NutrRev, 2005
NORMAL PREGNANCY

- Th2 domination
- Expressed in macrophages, placenta and deciduas.
- Levels increased from early pregnancy.
- Expressed in placenta and deciduas.
- Required for normal reproduction.

PRE-ECLAMPSIA

- Th1 overexpression
- Altered expression/activity in pre-eclampsia?
- Pre-eclampsia associated with genetic variations in VDR?
- Levels decreased compared to normal pregnant controls.
- Expression and activity is restricted

Vitamin D intake

1α-hydroxylase

1,25(OH)₂D

25(OH)D

Vitamin D receptor (VDR)

Immunological tolerance

Immunomodulation

- Expressed in macrophages, placenta and deciduas.
NORMAL PREGNANCY

- Th2 domination
- Expressed in macrophages, placenta and deciduas.
- Levels increased from early pregnancy.
- Expressed in placenta and deciduas.
- Required for normal reproduction.

PRE-ECLAMPSIA

- Th1 overexpression
- Altered expression/activity in pre-eclampsia?
- Pre-eclampsia associated with genetic variations in VDR?
- Levels decreased compared to normal pregnant controls.
- Expression and activity is restricted
- Levels decreased
- Incidence mirrors seasonal variations in vitamin D status

Immunological tolerance

Immunomodulation

- **Vitamin D receptor (VDR)**
- **1,25(OH)₂D**
- **1α-hydroxylase**
- **25(OH)D**

Vitamin D intake

Hyppönen. NutrRev, 2005
NORMAL PREGNANCY

- Th2 domination

- Expressed in macrophages, placenta and deciduas.

- Levels increased from early pregnancy.

- Expressed in placenta and deciduas.

- Required for normal reproduction.

PRE-ECLAMPSIA

- Th1 overexpression

- Altered expression/activity in pre-eclampsia?

- Pre-eclampsia associated with genetic variations in VDR?

- Levels decreased compared to normal pregnant controls.

- Expression and activity is restricted

- Levels decreased

- Incidence mirrors seasonal variations in vitamin D status

Immunological tolerance

Immunomodulation

Vitamin D receptor (VDR)

1,25(OH)\(_2\)D

1α-hydroxylase

25(OH)D

Vitamin D intake

Hyppönen. NutrRev, 2005
NORMAL PREGNANCY

- Immunological tolerance
 - Th2 domination
 - Expressed in macrophages, placenta and deciduas.
 - Levels increased from early pregnancy.
 - Expressed in placenta and deciduas.
 - Required for normal reproduction.

Vitamin D receptor (VDR)

1,25(OH)$_2$D

1α-hydroxylase

25(OH)D

Vitamin D intake

PRE-ECLAMPSIA

- Immunological tolerance
 - Th1 over-expression
 - Altered expression/activity in pre-eclampsia?
 - Pre-eclampsia associated with genetic variations in VDR?
 - Levels decreased compared to normal pregnant controls.
 - Expression and activity is restricted
 - Levels decreased
 - Incidence mirrors seasonal variations in vitamin D status

Hyppönen. NutrRev, 2005
NORMAL PREGNANCY

- Th2 domination
- Expressed in macrophages, placenta and deciduas.
- Levels increased from early pregnancy.
- Expressed in placenta and deciduas.
- Required for normal reproduction.

Immunological tolerance

Immunomodulation

Vitamin D receptor (VDR)

1,25(OH)\(_2\)D

1\(\alpha\)-hydroxylase

25(OH)D

Vitamin D intake

PRE-ECLAMPSIA

Impaired

- Th1 over-expression
- Altered expression/activity in pre-eclampsia?
- Pre-eclampsia associated with genetic variations in VDR?
- Levels decreased compared to normal pregnant controls.
- Expression and activity is restricted

- Levels decreased
- Incidence mirrors seasonal variations in vitamin D status

Hyppönen. NutrRev, 2005
Bodnar et al. Maternal vitamin D deficiency increases the risk of preeclampsia. JCEM 2007
- Nested case-control study with 55 cases and 219 controls
- 25(OH)D concentrations measured by 16wk, pre-eclampsia onset after 20wks.
 - 25(OH)D concentrations lower in pre-eclamptic women compared to controls (45nmol/l vs. 53nmol/l, p=0.01)
 - 2-fold increase in pre-eclampsia risk for 50nmol/l increase in 25(OH)D
 - 25(OH)D concentrations lower in the offspring to pre-eclamptic women compared to offspring of controls (39nmol/l vs. 50 nmol/l, p=0.001)

Haugen et al. Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 2009
- Norwegian Mother and Child Cohort, 23,423 nulliparous pregnant women (1267 with preeclampsia)
- Questionnaire Information vitamin D supplementation (week 15) and dietary intake (week 22)
- Pregnancy outcomes were obtained from the Medical Birth Registry.
 - Total vitamin D intake (15-20 µg/d vs. <5µg/d) associated with reduced pre-eclampsia risk
 (OR 0.76, 95%CI 0.60-0.95).
 - Vitamin D supplementation (vs. no supplements) associated with reduced pre-eclampsia risk
 (OR 0.73, 95%CI 0.58-0.92).
 - No association between vitamin D intake from food and preeclampsia
Does early-life vitamin D status or intake have long-term influences on immunological diseases?

- Programming of the immune system, in particular related to tolerance development, starts before birth and stays under close control of the maternal immune system
 - Pre- and postnatal period important ‘window of opportunity’ for immune programming
 - Controlled by gene-environment interaction, epigenetic mechanisms

- Evidence for epigenetic regulation of genes in the vitamin D pathway
 - Placenta specific methylation of 24-hydroxylase
 - Transcriptional regulation of the CYP27B1 gene mediated by epigenetic modifications
Vitamin D and type 1 diabetes

TYPE 1 DIABETES
• Chronic autoimmune disease, multifactorial etiology with both genetic predisposition and exposure to environmental risk factors required

• Long latency from initiation to disease onset

• Insulin secreting beta cells destroyed in a T-cell dependent process

• Polarization towards Th1 up-regulation is believed central to the pathogenesis

Vitamin D may be able to disrupt both the initiation and progression of the T-cell mediated pathogenesis of Type 1 diabetes?
Stene et al. Diabetologia, 2000
- Norwegian case-control study, 85 cases / 1071 control children
 - Maternal cod liver oil supplementation during pregnancy associated with a reduced diabetes risk in the offspring (OR 0.30, 95%CI 0.12-0.75)
 - Results inconclusive on the effect of infants cod liver oil intake or vitamin D supplementation

Fronzak et al. Diabetes Care 2003
- 233 children followed up for 4y, 16 developed insulin autoantibodies
 - Maternal intake of vitamin D via food associated with decreased risk of IA antibodies (HR 0.37, 95%CI 0.17, 0.78)

Brekke and Ludvigsson, Pediatr Diabetes 2007
- Follow-up of 8695 children up to 1y for seroconversion to positivity for diabetes specific autoantibodies (n=774). (For 2.5y, 7766 and 774, respectively)
 - Use of vitamin-D supplements during pregnancy associated with reduced diabetes-related autoimmunity at 1y (OR 0.71, 95%CI 0.52-0.96) but not at 2.5y.
* All pregnant mothers with expected date of delivery in 1966 in two most northern provinces of Finland (n=12,058)

* Information on vitamin D supplementation (frequency, dose) and suspected rickets collected at 1 year of age (n=10,366)

*****Dose recommendation 2000 IU/day (50µg/day)*****

- Follow-up for Type 1 diabetes to age 31 through linkage to Central Drug Register with further ascertainment of cases diagnosed at age 20 or older using hospital discharge register and/or medical files
 - 81 cases (total n=10,366)
Incidence of Type 1 diabetes by FREQUENCY of vitamin D supplementation

Adjusted for: sex, neonatal, social and anthropometrica indicators

Hyppönen et al. Lancet, 2001
Incidence of Type 1 diabetes by FREQUENCY of vitamin D supplementation

Adjusted for: sex, neonatal, social and anthropometric indicators

Hyppönen et al. Lancet, 2001
Incidence of Type 1 diabetes by FREQUENCY of vitamin D supplementation

Adjusted for: sex, neonatal, social and anthropometrical indicators

Hyppönen et al. Lancet, 2001
Incidence of Type 1 diabetes by DOSE of vitamin D supplementation

Restricted to children receiving vitamin D regularly

Adjusted for: sex, neonatal, social and anthropometrical indicators

Hyppönen et al. Lancet, 2001
Incidence of Type 1 diabetes by DOSE of vitamin D supplementation

Adjusted for: sex, neonatal, social and anthropometric indicators

Hyppönen et al. Lancet, 2001
Incidence of Type 1 diabetes by DOSE of vitamin D supplementation

Restricted to children receiving vitamin D regularly

Adjusted for: sex, neonatal, social and anthropometric indicators

Hyppönen et al. Lancet, 2001
Incidence of Type 1 diabetes by suspected RICKETS

RR = 3.0
p<0.05

Adjusted for:
increased dose, sex, neonatal, social, and anthropometric indicators

Hyppönen et al. Lancet, 2001
Long-term effects of infant vitamin D supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm
Long-term effects of infant vitamin D supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm

Type 1 diabetes ↓
Pre-eclampsia ↓
<table>
<thead>
<tr>
<th>Frequency of vitamin D supplementation</th>
<th>number</th>
<th>% (cases)</th>
<th>OR (95% CI)</th>
<th>Adjusted (^a) OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregularly/none</td>
<td>339</td>
<td>3.8 (13)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Regularly</td>
<td>2630</td>
<td>2.1 (55)</td>
<td>0.54 (0.29, 0.99)</td>
<td>0.49 (0.26, 0.92)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose of vitamin D(^b)</th>
<th>number</th>
<th>% (cases)</th>
<th>OR (95% CI)</th>
<th>Adjusted (^a) OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 IU per day</td>
<td>2499</td>
<td>2.1 (53)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>> 2000 IU per day</td>
<td>120</td>
<td>1.7 (2)</td>
<td>0.78 (0.19, 3.26)</td>
<td>0.81 (0.18, 3.55)</td>
</tr>
</tbody>
</table>

Prevalence and risk of pre-eclampsia by vitamin D supplementation in infancy - Northern Finland Birth Cohort 1966

Hyppönen et al. EJCN 2007
Long-term effects of infant vitamin D supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm
Long-term effects of infant vitamin D supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm

- Vitamin D
- Allergy ↑
- Th2

- Type 1 diabetes ↓
- Pre-eclampsia ↓
Prevalence of allergic conditions by FREQUENCY of vitamin D supplementation

p<0.001, * p=0.05

Hyppönen et al. ANYAS, 2004
Prevalence of allergic conditions by
DOSE* of vitamin D supplementation

* Restricted to infants receiving vitamin D regularly

Hyppönen et al. ANYAS, 2004
Support for increases in allergy/asthma by vitamin D...

Gale et al. EJCN 2007

Higher maternal vitamin D status during pregnancy associated with...
...3-fold risk (95%CI 1.2-9) of visible eczema at 9 months
...over 5-fold risk (95%CI 1.1-27) of reported asthma at 9 years

Hughes et al. Pediatr Allergy & Immunol 2010

In an Australian study...
..cod liver oil supplementation in childhood associated with hayfever/asthma
..greater wintertime sun exposure in childhood associated with hayfever
Serum IgE by variations in 25(OH)D
-geometric mean, standardized by sex and season

Hyppönen et al. Allergy, 2009
... but what about all this??

Is vitamin D deficiency to blame for the asthma epidemic?
Litonjua & Weiss, J Allergy Clin Immunol 2007

“..using data from the two birth cohorts with maternal vitamin D assessments, we estimate that the population attributable risk for asthma incidence caused by vitamin D deficiency in pregnancy is about 40% of all cases.”

Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Camargo et al. AJCN 2007

1194 mother-child pairs: Compared with mothers in the lowest quartile of daily intake (median: 356 IU), those in the highest quartile (724 IU) had a lower risk of having a child with recurrent wheeze [OR: 0.39; 95% CI: 0.25, 0.62; P for trend < 0.001].

1212 children: maternal total vitamin D intake (highest: 275IU/day vs lowest: 77IU/day quintiles) conferred lower risks for ever wheeze [OR: 0.48; 95% CI: 0.25, 0.91], wheeze in the previous year (OR: 0.35; 95% CI: 0.15, 0.83), and persistent wheeze (OR: 0.33; 95% CI: 0.11, 0.98) in child at 5y.
Serum IgE by variations in 25(OH)D
- geometric mean, standardized by sex and season

Hyppönen et al. Allergy, 2009
Airway eosinophilia - a key pathophysiological feature of asthma - was also reduced, possibly suggesting beneficial influences through a reduced inflammatory response.

Vitamin D status and prevalence of respiratory infections in the 1958BC

Berry et al. BJN 2011, in press
Active vitamin D (i.e. 1,25(OH)$_2$D)…

- leads to a **general reduction in inflammation**, which together with direct anti-proliferative effects in human airway smooth muscle cells (through inhibition of matrix metallo-proteinases) is believed to be instrumental for explaining the observed reductions in asthma risk.

- influences **barrier integrity**, which could protect against the direct influence of harmful pathogens.

- reduces **MHC II antigen expression** on the cell membrane surface and induces macrophages and epithelial cells to produce cathelicidin, a peptide involved in antimicrobial action.

…in addition to affecting regulatory T cell activity, and the balance between Th1 and Th2 type immunological responses.
Summary

- Vitamin D is a powerful immunomodulator, which can have long term influences on immunological disease such as diabetes and allergy risk
 - Evidence accumulating for beneficial effects in infections/inflammation

- Hypovitaminosis D short of deficiency may have important implications for
 - the maintenance of normal pregnancy
 - long-term implications for offspring health.
Public health message: Avoid vitamin D deficiency!