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Introduction

Delay up the progression of chronic kidney disease
(CKD) is still an unsolved problem. The suppression of
known ‘causes’ of progression by targeting high blood
pressure as well as the renin–angiotensin system (RAS)
has met with some success in REIN, RENAAL, IDNT,
and other clinical trials [1–3]. However, although these
therapies slow the progression of CKD, the residual
risk of these patients for both renal and cardiovascular

end points remains high. Since the pathogenesis of
renal progressive disease is multifactorial, a combined
therapy strategy may be the way for the future to
completely block renal disease progression. An inter-
esting result of such a combined therapy strategy
came from the COOPERATE trial [combining
ACE-inhibition with angiotensin-II-receptor-blockade
(ACEi/ARB)], targeting the same hormonal systems
from different angles [4]. Other strategies target
different pathophysiologically important systems at
the same time, such as RAS and glycosaminoglycans
[5], and RAS and endothelin [6]. Recent evidence
supports the theory that active vitamin D and its
analogues attenuate glomerular and tubular interstitial
fibrosis. Could vitamin D become an additional
therapeutic agent for CKD? The present review will
focus primarily on the most recent advances in our
understanding of the potential therapeutic roles of
calcitriol and its analogues in the area of CKD.
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Vitamin D

Under normal conditions, humans acquire
vitamin D either from the diet or from de novo
synthesis in the skin as a result of direct sun
exposure. Vitamin D3 is initially hydroxylated
in the liver by 25-hydroxylase to form
25-hydroxyvitamin D3, with a subsequent hydroxyla-
tion in the kidney to form the active metabolite,
1a-25-dihydroxyvitamin D3, also known as
calcitriol, which is eventually metabolized by
25-hydroxyvitamin D-24-hydroxylase (24-OHase).
The binding of 1a-25-dihydroxyvitamin D3 or its
analogues to the vitamin D receptor (VDR), a
nuclear receptor, activates the VDR and leads to
the recruitment of cofactors like the retinoid X
receptor (RXR), resulting in the formation of the
VDR–RXR–cofactor complex, which binds to the
vitamin D response element (VDRE) in the promoter
region of target genes to regulate gene transcription
[7]. Several tissues have 25-hydroxyvitamin D
1a-hydroxylase, which could convert 25-hydroxy-
vitamin D to 1,25 dihydroxyvitamin D locally [8].
However, the serum level of 1,25 dihydroxyvitamin
D is regulated by renal 25-hydroxyvitamin D
1a-hydroxylase. In the recent Study to Evaluate
Early Kidney Disease (SEEK), calcitriol deficiency
(defined as serum levels <22 pg/ml) was found in
32% of CKD stage 3 and >60% of CKD stages 4
and 5 pre-dialysis patients [9]. The VDR has been

found in more than 30 tissues including the intestines,
bone, kidney, parathyroid gland, pancreatic b-cells,
monocytes, T-cells, keratinocytes and many cancer
cells [10], suggesting that the vitamin D endocrine
system may also be involved in regulating the
immune systems, cellular growth, differentiation and
apoptosis. The details of the effect of vitamin D in
many different organs and diverse disease states
have been described in several comprehensive
reviews [11–15].

Current concepts for progressive renal function loss

and the potential role of vitamin D

Renal fibrogenesis is a complex process in which many
pathogenic pathways and mediators are implicated
(Figure 1). Accordingly, an ideal therapy should have
the potential to target multiple events along the
pathogenic pathway to inhibit both glomerular and
tubular interstitial fibrosis. Growing evidence supports
a potential role for active vitamin D in ameliorating
renal fibrosis and kidney dysfunction, in view of its
targeted effects on multiple pathogenic pathways. The
correlation between active vitamin D deficiency and
the diseased kidney has been well established, and low
serum levels of 1,25(OH)2D3 are often associated with
decreased kidney function [16,17]. On one hand,
decreased kidney mass and/or a reduced uptake of
the precursor are likely to be the causes of vitamin D

Fig. 1. Active vitamin D has been shown to inhibit multiple pathogenic pathways in renal fibrosis. Active vitamin D (1) has anti-
inflammatory effects; (2) inhibits mesangial and podocyte proliferation; (3) down-regulates the renin–angiotensin system (RAS) by inhibiting
renin production; (4) prevents glomerular hypertrophy as measured by glomerular volume in 5/6 subtotal nephrectomized rats; (5) decreases
proteinuria in different animal models of CKD; (6) decreases fibrogenic cytokine production in the kidney by regulating Smad3 and TGF-b
pathways; (7) has the potential to block the EMT and myofibroblast activation. RAS, renin–angiotensin system; PGC, glomerular capillary
pressure; SNGFR, single-nephron glomerular filtration rate; a-SMA, a-smooth muscle actin; EMT, epithelial to mesenchymal transition.
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deficiency because renal tubular cells are the active
sites of calcitriol synthesis. On the other hand, since
adequate local concentrations of active vitamin D may
be required to maintain structural and functional
integrity of renal parenchyma, lower vitamin D levels
might be one of the causative factors that initiate and
promotes the progression of CKD; this could then
further impact on renal function loss, causing a vicious
circle. The targets of vitamin D therapy in CKD
identified thus far involve renal inflammation (such as
T-cells and other immune cells), the RAS and
glomerular (mesangial cells and podocytes) and tubu-
lointerstitial (tubular epithelial cells and interstitial
fibroblasts) fibrosis.

A schematic of the proposed pathophysiology of
renal fibrosis along with the referenced data cataloguing
potential effects of vitamin D on the progression of
CKD are summarized in Figure 1.

Experimental evidence for a role of active

vitamin D in CKD

Effect on renal compensation and RAS

Several studies have examined the effect of vitamin D
on renal compensatory growth after subtotal nephrec-
tomy (SNX) in animal models. Schwarz et al. [18] first
examined the effect of 1,25(OH)2D3 on glomerulo-
sclerosis in SNX rats. Administration of 1,25(OH)2D3

at 3 ng/100 g/day for 8 or 16 weeks significantly
decreased both glomerular volume and albuminuria,
compared with the untreated controls. Likewise,
Hirata et al. [19] examined the effect of the vitamin
D analogue, 22-oxa-calcitriol (OCT), in the same
model, and found that OCT treatment significantly
suppressed urinary albumin excretion, inhibited
glomerular hypertrophy and glomerulosclerosis in the
SNX rats at 8 weeks.

Li et al. [20] recently explored the mechanism
underlying the relationship between vitamin D and
the RAS using genetically modified animal models.
They noted that plasma angiotensin II levels were
markedly elevated in VDR knockout (KO) mice and
1-a hydroxylase KO mice, while angiotensinogen
expression in the liver was not different from wild-
type (WT) mice, indicating that plasma angiotensin II
elevation was likely to be due to increased renin activity.
The size of left ventricular cardiomyocyte in VDR KO
mice was markedly increased compared with WT
controls [21]. Further studies demonstrated that WT
mice, when rendered vitamin D deficient, also had
increased renin production, whereas 1,25(OH)2D3

treatment of normal mice resulted in renin suppression.
By using As4.1 cells (a renin-expressing cell line
isolated from a mouse renal tumour) in vitro, they
also demonstrated that the effect of 1,25(OH)2D3 on
renin regulation was independent of serum calcium and
parathyroid hormone (PTH) levels [20]. Therefore,
vitamin D serves as a negative endocrine regulator of
the RAS, directly and independently suppressing renin

gene expression. This offers a potential mechanistic
insight into the role of vitamin D on cardiorenal
protection and homoeostasis. These studies also
provide a molecular basis to explore the potential of
vitamin D analogues as therapeutic renin inhibitors
to modulate the RAS and prevent glomerular haemo-
dynamic adaptation [21].

Effects on podocytes and mesangial cells

Earlier studies have demonstrated the presence of
the VDR in cultured human mesangial cells [22].
Numerous approaches showed the specific binding of
1,25(OH)2D3 to human mesangial cells. Two groups
have provided clear evidence for the functional
effects of 1,25(OH)2D3 on mesangial cells [23,24], by
demonstrating the beneficial action of 1,25(OH)2D3

and OCT in regulating mesangial proliferation in vivo.
In the anti-thy-1 glomerulonephritis model, both OCT
and 1,25(OH)2D3 not only inhibited mesangial cell
proliferation, as evidenced by a decreased proliferating
cell nuclear antigen (PCNA) expression, but also
decreased the degree of glomerulosclerosis and
albuminuria, as well as the expression of type I and
type IV collagen and a-SMA.

Alteration of mesangial cells has traditionally been
considered the major process in the development of
glomerular injury. However, more recently, podocytes
have been recognized as key cells in the evolution of
proteinuria, especially in diabetic nephropathy. Recent
reports indicate that 1,25(OH)2D3 decreases podocyte
loss and inhibits podocyte hypertrophy in the SNX rats
[25]. Sprague–Dawley rats were either sham-operated
or underwent subtotal nephrectomy, and then received
either solvent vehicle or 1,25(OH)2D3 for up to
16 weeks. Mean podocyte volume was significantly
higher in the SNX rats, compared with both the sham
and 1,25(OH)2D3-treated SNX groups. These findings
indicate that hypertrophy of podocytes could be
prevented by treatment with 1,25(OH)2D3. Electron
microscopic investigation has also shown that the
glomerular ultrastructure was largely preserved when
SNX rats were treated with 1,25(OH)2D3. Decreased
expression of desmin, PCNA and an increased p27
were found in the 1,25(OH)2D3-treated SNX group,
compared with the solvent controls, suggesting less
podocyte injury and less activation of the cyclin
cascade. This study clearly identifies the podocyte as
a potentially important target for renal protective
actions of vitamin D.

It is well known that glomerular haemodynamic
changes, podocyte abnormality and mesangial activa-
tion are associated with proteinuria. The beneficial
effect of active vitamin D on glomerular structures
is consistent with the results of proteinuria
reductions in several animal models [18,19,23,24] and
in humans [26]. By reducing proteinuria, vitamin D
may attenuate protein-dependent interstitial inflamma-
tion in nephropathies [27]. In addition, vitamin D has
direct anti-inflammatory properties.
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Effect on renal inflammation

Chronic inflammation, characterized by infiltration of
inflammatory cells into the glomeruli and tubulointer-
stitium, is regarded as one of the key pathogenic
mechanisms in the development and progression of
CKD [28]. Clinical studies also reveal that the decline
in renal function in patients with CKD often correlates
closely to the extent of inflammation.

Inflammatory cells contribute to tissue damage
in many ways. For example, the production of
pro-fibrotic cytokines such as transforming growth
factor-b (TGF-b), which in turn induces the matrix-
producing myofibroblast activation and tubular
epithelial to mesenchymal transition (EMT), thereby
promoting the fibrogenic process. In addition, inflam-
matory cells can elicit their effects by producing radical
oxygen species and by releasing pro-inflammatory
cytokines, which modulate the response of renal
residential cells to injurious stimuli. Vitamin D has
long been known to possess immunomodulatory
properties that are mediated through the VDR,
which is present in most cell types of the immune
system, in particular, the antigen presenting cells such
as macrophages, dendritic cells and both CD4þ and
CD8þ T-cells [29,30].

Transcription factor nuclear factor-�B (NF-�B)
plays a crucial role in acute and chronic inflammation
by regulating the gene expression of cytokines,
chemokines, adhesion molecules and growth factors
[31]. Before the era of ACEi/ARB therapy, steroids
were widely used for patients with glomerulonephritis
and inflammatory tubular interstitial nephritis. The
major effect of steroids on immune suppression occurs
by down-regulation of NF-�B. Similarly, several
different studies have illustrated an inhibitory effect
of vitamin D on NF-�B signalling. In normal human
lymphocytes, 1,25(OH)2D3 decreased the levels of
NF-�B protein, whereas 25(OH)D or 24,25(OH)2D
were ineffective [32]. Studies by Xing et al. [33] revealed
that treatment of dendritic cells with a combination
of steroids and active vitamin D analogue resulted in
significant, additive inhibition of pro-inflammatory
cytokines, chemokines and NF-�B components. Those
findings suggest that the use of steroids in the presence
of 1,25(OH)2D3 may affect different pathways of
immune regulation as compared with steroids alone.

Tumour necrosis factor-a (TNF-a) also stimulates
the production of chemotactic factors by resident cells.
Macrophages, as well as intrinsic kidney cells, are the
primary source of TNF-a. In vivo, calcitriol induces
a dose-dependent inhibition of TNF-a production in
both healthy volunteers and haemodialysis (HD)
patients [34]. Furthermore, in addition to the inhibi-
tory effects on dendritic cells and macrophages,
1,25(OH)2D3 has a direct effect on naı̈ve CD4þ
T-cells to enhance the development of Th2 cells,
which down-regulates the immune response [35]. As
summarized by Mathieu and Adorini [36], vitamin D
can elicit a number of regulatory activities in the
immune system.

Numerous studies have evaluated the anti-
inflammatory potential of vitamin D in animal
models of CKD. Lemire and associates studied the
effect of 1,25(OH)2D3 on lupus nephropathy in MRL/I
mice [37]. Calcitriol treatment reduced proteinuria,
and a reduction in serum titres of anti-ssDNA
antibody was observed at 18 weeks. The therapeutic
effect of 1,25(OH)2D3 on Heymann nephritis was also
investigated in Lewis rats. At a dose of 0.5mcg/kg
every other day during the first 13 days following
active immunization, calcitriol significantly reduced
proteinuria and the magnitude of this reduction was
comparable with that treated with cyclosporine A [38].
The association between serum 1,25(OH)2D3 levels and
local inflammation in renal biopsy tissue was also
analysed by Zehnder et al. [39] in 186 patients with
kidney disease. Renal MCP-1 mRNA, urinary MCP-1
and infiltrating tissue macrophages were found to be
inversely correlated with serum 1,25(OH)2D3 levels.
Similarly, treatment with calcitriol almost completely
abrogated the glomerular infiltration of neutrophils
in the anti-thy-1 model [23].

In addition to its ability to induce tolerogenesis
in dendritic cells, calcitriol enhances macrophage
anti-bacterial, anti-viral and anti-tumoural properties.
However, in human studies, active vitamin D
analogues failed to show significant effects on the
regulation of several cytokines including IL-2, IL-6,
TNF-a and interferon-�, but showed a tendency
toward improving delayed hypersensitivity reactions
in dialysis patients [40]. The net overall effect of active
vitamin D on cytokine production remains to be
determined in the context of higher levels of inflam-
matory cytokines, decreased VDR and interference of
1,25(OH)2D3 actions by uraemic toxins in CKD patients.

Vitamin D and tubular interstitial fibrosis

Unlike glomerular fibrosis, until recently, much less
was known about the effect of vitamin D on tubular
interstitial fibrosis (TIF). The proximal tubular
epithelial cell is the site of endogenous synthesis of
1,25(OH)2D3. The 24 hydroxylase is an important
enzyme, that metabolizes 1,25(OH)2D3 to the less
active 24,25(OH)2 Vitamin D3. The balance between
1,a hydroxylase and 24 hydroxylase may be one of the
major determinants in maintaining plasma levels of
1,25(OH)2D3, at least in the early stages of CKD. The
initial compensatory changes following kidney damage
(as noted in the 5/6 nephrectomy model) was down-
regulation of 24 hydroxylase in order to maintain
1,25(OH)2D3 levels [41]. The VDR is present in these
tubular epithelial cells, and regulates functions in these
cells well beyond calcium homoeostasis. The VDR,
in the presence of hypocalcaemia, is normally down-
regulated in CKD and in active vitamin D deficiency.
Studies show that 1,25(OH)2D3 significantly enhances
renal VDR and VDR mRNA expression both in vivo
or in vitro [42]. The 1,25(OH)2D3-mediated increase
in renal VDR was the result of the activation of gene
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expression and stabilization of the VDR. Another
change during the early stages following kidney injury
is the down-regulation of megalin in the renal tubular
cells. Lower megalin levels affect endocytosis, which
lead to decreased 25(OH)D3 reabsorption as well as
increased proteinuria [43]. If 1,a hydroxylase and VDR
levels are preserved, 25(OH)D3 administration may be
sufficient to maintain the high levels of 1,25(OH)2D3

production that are required for a cell specific function.
Most probably, endogenously generated calcitriol
could overcome the dramatic decline of megalin
expression [41], and thereby prevent the onset of
protein loss or the impaired 25(OH)D3 uptake
necessary for calcitriol synthesis. In this context, the
use of active vitamin D might play a role in retarding
the progression of renal disease. Notably, the vitamin
D used to evaluate the effects on renal protection in
all published studies was either active vitamin D
(calcitriol) or one of its analogues.

Weinreich et al. [44] reported that 1,25(OH)2D3 and
another vitamin D analogue, KH 1060, inhibited
proximal tubular epithelial cell proliferation in a
dose-dependent manner. Diminished local production
of 1,25(OH)2D3 by tubular epithelial cells in CKD
may facilitate interstitial fibrosis as a result of
decreased inhibitory control of 1,25(OH)2D3 on renal
cell proliferation. Direct evidence for vitamin D
inhibition of interstitial fibrogenesis was recently
obtained in cultured interstitial fibroblasts. We found
that 1,25(OH)2D3 suppressed the myofibroblast
activation from interstitial fibroblast [45], a critical
event in generating a-SMA-positive, matrix-producing
effector cells in diseased kidney. Myofibroblast activa-
tion was initiated by incubation with TGF-b1,
and treatment of rat renal interstitial fibroblasts
(NRK-49F) with 1,25(OH)2D3 suppressed TGF-b1
induced a-SMA expression in a dose-dependent
manner. Similarly, 1,25(OH)2D3 suppressed type I
collagen and thrombospondin-1 expression triggered
by TGF-b1. These results establish the anti-fibrotic
activities of active vitamin D, through its counteraction
of the pro-fibrotic TGF-b1.

The mechanism underlying vitamin D’s ability to
inhibit myofibroblast activation was further investi-
gated. It turns out that 1,25(OH)2D3-induced anti-
fibrotic hepatocyte growth factor (HGF) mRNA
expression and protein secretion in renal interstitial
fibroblasts [45]. There is a putative VDRE in the
regulatory region of the HGF gene [46]; and
1,25(OH)2D3 indeed stimulated HGF gene promoter
activity and induced the binding of the VDR to the
VDRE in the HGF promoter region. Furthermore,
1,25(OH)2D3 was capable of stimulating HGF
receptor phosphorylation in renal fibroblasts, and
HGF-neutralizing antibody largely abolished
1,25(OH)2D3-mediated suppression of myofibroblast
activation. These studies provide a significant, mecha-
nistic insight into understanding the potential
beneficial role of active vitamin D against renal
fibrosis. Moreover, the connection between active
vitamin D and HGF provides additional clues on the

potentially broader effect of 1,25(OH)2D3 on kidney
cells. In essence, any beneficial properties of HGF
in kidney fibrosis can be potentially shared by
1,25(OH)2D3. Although the anti-fibrotic effect of
1,25(OH)2D3 is only illustrated in interstitial
fibroblasts, it could have a wide range of actions on
all kidney cells, because the HGF receptor, c-met,
is expressed in all kidney cells tested to date [45].

In addition to its effect on the HGF expression,
active vitamin D also antagonizes pro-fibrotic TGF-b1
in tubular epithelial cells, leading to the inhibition of
tubular EMT, a key event in the pathogenesis of TIF.
We recently showed that paricalcitol was able to
preserve tubular epithelial E-cadherin after TGF-b1
treatment [52], suggesting a critical role of active
vitamin D in the maintenance of mature epithelial cell
phenotypes. It remains unclear how vitamin D blocks
TGF-b1 action in tubular epithelial cells, but one
possibility is that the VDR can directly interact with
Smads, the intracellular mediators that transduce
TGF-b1 signals. Although previous studies showed
that the interaction between VDR and Smad3 results
in stimulation of Smad3-mediated gene transcription
[47], similar interactions may repress TGF-b1/Smad
actions in tubular epithelial cells. In addition, activa-
tion of VDR may inhibit TGF-b1 expression, as
vitamin D-treated rats had a significant reduction in
bioactive renal TGF-b1 [48].

Another potential mechanism for the role of active
vitamin D against TGF-b1 is that active vitamin D
preserves tubular epithelial phenotypes by inhibiting
b-catenin signalling, a critical signal pathway down-
stream to TGF-b1/integrin-linked kinase, which
mediates tubular EMT [49,50]. It has been reported
that the ligand-activated VDR competes with T-cell
transcription factor (TCF)-4 for b-catenin binding.
Accordingly, vitamin D repressed b-catenin/TCF-4
transcriptional activity in colon carcinoma cells [51].
Regardless of the mechanisms, the observation that
vitamin D blocks TGF-b1-mediated tubular EMT,
together with its ability to inhibit myofibroblast
activation, suggests that active vitamin D may be
capable of suppressing renal interstitial fibrogenesis in
the pathologic conditions.

Finally, the beneficial effect of 1,25(OH)2D3 on renal
TIF was also confirmed in animal models of CKD
induced by unilateral ureteral obstruction (UUO). We
have demonstrated that mice injected with paricalcitol
for 7 days developed significantly less fibrotic lesions
after obstructive injury when compared with vehicle
control. Paricalcitol significantly attenuated the
expression of a-SMA, fibronectin, collagen I and
collagen III, while it largely restored the expression
of E-cadherin and VDR [52]. To prove that the renal
protective effects of 1,25(OH)2D3 are independent of
PTH, Schwarz et al. [18] examined parathyroidecto-
mized SNX rats with or without 1,25(OH)2D3 treat-
ment. In animals treated with 1,25(OH)2D3, the
number of PCNA-positive cells was significantly less
in tubules, thereby decoupling the renal protective
effects of vitamin D from changes in PTH levels.
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Vitamin D deficiency and the progression of CKD

Without an initial insult, 1,25(OH)2D3 deficiency alone
may not cause kidney damage. However, subjects with
vitamin D deficiency may be vulnerable to kidney
injury, which, in turn, could accelerate the progression
of renal disease [53,54]. Aihara et al. [54] studied the
possibility that activation of the VDR down-regulates
thrombotic stimuli. When an intravenous injection
of LPS at a dose of 5 mg/kg was administered to VDR
KO and WT mice, although all mice survived the
treatment, immunohistochemical analysis revealed that
VDR KO mice exhibited an increased fibrin deposition
in the glomeruli and peritubular capillaries of the
kidney compared with WT mice. Li et al. [55] studied
the gene expression profile in the kidney of VDR KO
mice by using three independent DNA microarrays
and noted alterations in the profile that covered
multiple functional categories including signal trans-
duction, transcriptional regulation, cell adhesion,
metabolism, immune response and other functions.
These findings strongly support the notion that active
vitamin D is an endocrine hormone with multiple
functions.

Clinical evidence

The current clinical indication for calcitriol or its
analogues is the treatment of renal osteodystrophy or
secondary hyperparathyroidism (SHPT) associated
with CKD. In the past, there have been concerns that
vitamin D might be ‘nephrotoxic’, based on two
reports published in the 1970s [56,57]. There is no
doubt that high doses of vitamin D and resultant
hypercalcaemia and hypercalciuria may lead to
decreased GFR; for many years, the fear of accelerating
the decline in renal function limited the use of active
vitamin D or its analogues in early CKD. However,
recent studies, including several prospective rando-
mized trials, have shown beneficial effects of moderate
doses of active vitamin D on bone health and decrease
PTH levels without adverse consequence to renal
function in patients with mild to moderate CKD
[58–61]. Interestingly, a retrospective analysis of
76 renal transplant patients with chronic allograft
nephropathy found that treatment with calcitriol was
associated with a significant improvement of graft
survival at 3 years compared with the group that was
not treated with calcitriol [62]. However, there are
no prospective trials that have studied the possible
renoprotective effect of active vitamin D on renal
outcome using appropriate hard end points.
Proteinuria is not only an unequivocal sign of kidney
disease, but it also contributes to progression of CKD
and serves as a significant marker for future cardio-
vascular (CV) events [63,64]. In this context, Agarwal
et al. [26] have recently reported some interesting
findings. They found that oral paricalcitol appears
to have an anti-proteinuric effect in three pooled,
double-blind, randomized, placebo-controlled studies

in CKD Stages 3 and 4 patients. Patients were
randomized to paricalcitol capsules (n¼ 107, mean
dose 9.5mcg/week) or placebo (n¼ 113) and followed
for up to 24 weeks. In conjunction with other safety
measures, proteinuria was measured by dipstick and
read by an automated reader in a central lab at the
beginning and end of trial. At the final visit, 51% of
the paricalcitol patients compared with 25% of the
placebo patients had reduction in proteinuria, and
these findings were independent of RAS blockade
by ACEi/ARBs therapy. Although the method of
detection of proteinuria is a limitation of this study,
the outcome is at least hypothesis-generating. Clearly,
more rigorous studies on the effect of active vitamin D
on proteinuria are needed, followed by studies on hard
end points.

It should be noted that the potential adverse
consequences of vitamin D administration include
alterations in serum minerals (hypercalcaemia, hyper-
phosphataemia and over-suppression of PTH), poten-
tial for soft tissue and arterial calcification, and
adynamic bone disease. New vitamin D analogues
with less calcaemic effects may decrease the risk of
these potential adverse effects and more studies are
needed in this area to confirm and clarify any
beneficial effects of active vitamin D in CKD patients.

Conclusion

Active vitamin D is produced in the normal kidney and
reduced serum levels of 1,25(OH)2D3 occur early in
CKD. Active vitamin D has many important functions
including immunomodulation, anti-proliferation and
pro-differentiation as well as down-regulation of RAS.
There is a growing amount of experimental evidence
that vitamin D may be renoprotective, and some
clinical evidence is now gathering. Whether this
renoprotection is independent of the effects of RAS-
intervention remains to be resolved. The currently
available data, however, urge us to further study the
potential role of active vitamin D or its analogues as
a drug class, to be added to the current renoprotective
(and potentially cardioprotective) pharmacological
armamentarium. Well-designed clinical studies are
needed to confirm this.
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Summary of the problem

The occurrence of vitamin C deficiency has compli-
cated the management of dialysis patients since the
beginning of renal replacement therapy [1]. The major
portion of dietary vitamin C is provided by potassium-
rich foods such as orange juice, strawberries and
broccoli, but these foods are restricted for haemodial-
ysis (HD) patients because HD removes potassium
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