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Evidence for a role of vitamin D insufficiency in determining risk in Multiple Sclerosis (MS) is supported by
studies in both pediatric- and adult-onset patients. The potential role of vitamin D in modulating MS disease
activity is an area of active clinical trials research, and the possibility of primary disease prevention with
vitamin D supplementation in early life is an emerging concept. With Sir Austin Bradford Hill's criteria as a
framework, the present review assesses the evidence for a causal relationship between vitamin D
insufficiency and the pathobiology of MS, and discusses rationale for future clinical trials with vitamin D.
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1. Introduction

Although MS has been reported in most world regions, prevalence
varies between different ethnic groups and across diverse geograph-
ical regions, supporting both genetic and environmental contributions
to MS biology [1–4]. The prevalence of MS is greater in areas with
temperate rather than tropical climates, it increases with distance
from the equator and is inversely associated with average ambient
UVB [5–10]. The striking difference in prevalence of MS and some
other autoimmune diseases as a function of latitude has implicated
vitamin D status as a determinant of risk. The potential role of vitamin
D in several autoimmune diseases, particularly MS, has been the
subject of several manuscripts and reviews [11–30]. While it is best
known for its role in calcium homeostasis and bone mineralization,
vitamin D is also involved in modulating immune function and cell
proliferation, differentiation, and apoptosis [31]. In vitro and animal
models of immune cell behaviour and central nervous system
inflammation have demonstrated a pro-inflammatory impact of
vitamin D insufficiency and an anti-inflammatory role for vitamin D
supplementation.

At present, the totality of evidence for a protective role of vitamin
D in MS has been deemed strong enough by some to warrant
recommending vitamin D supplementation to people with MS and to
individuals considered at high risk for MS [12]. Other investigators
advocate large primary prevention population-based studies or
randomized controlled Phase II and III studies in MS patients
[19,26,32].

The present review will provide a brief outline of vitamin D
metabolism, discuss the evidence for a causal relationship between
impaired vitamin D status and MS and whether this evidence is
sufficient to establish causality, and will propose concepts important
in determining the therapeutic role for vitamin D in MS.

2. Vitamin D metabolism

In humans, cholecalciferol (vitamin D3) is produced in the skin
following exposure of 7-dehydrocholesteol to ultraviolet B (UVB)
radiation. Vitamin D3 can also be obtained from the diet; it is naturally
present in oily fish and egg yolks and, in some countries, is added to
foods such as milk, margarine, yoghurt, orange juice, and cereal.
Estimating dietary intake of vitamin D is challenging for several
reasons: Variation in mandatory fortification rules means that,
between countries, different foods are fortified with varying amounts
of vitamin D; discretionary fortification results in only certain brands
or types of those foods containing vitamin D in some countries; and
the amount of vitamin D naturally present in some foods may vary
dramatically. For instance, natural vitamin D in animal-derived food
products may vary with the season [33], the vitamin D content of the
animals' diet [34], or other aspects of the animals' environment
[33,35]. Vitamin supplements may contain either vitamin D3 or
ergocalciferol (vitamin D2) and concentrations generally range from
50 IU in multivitamins to 1000 IU or more in products containing only
vitamin D; vitamin D2 is also present in some mushrooms, is added
to some nut milks and is generally considered less bioactive than
vitamin D3 [36–38].

Following either cutaneous synthesis or ingestion, vitamin D is
transported to the liver bound to the vitamin D binding protein (VDBP,
also known as group-specific component of serum or Gc-globulin)
[39]. Vitamin D ismetabolized to 25-hydroxyvitamin D3 [25(OH)D] by
the hepatic cytochrome P450 mixed-function oxidases (CYP) CYP2R1
Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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(microsomal) and CYP27A1 (mitochondrial) [40]. The concentration
of the 25(OH)Dmetabolite in the serum represents vitaminDobtained
from both UVB-catalyzed synthesis and diet, and is the accepted
biomarker for vitamin D nutritional status [41,42]. The 25(OH)D
metabolite is further hydroxylated by renal CYP27B1 to 1,25-
dihydroxyvitamin D [1,25(OH)2D; calcitriol], the most bioactive of
the naturally derived vitamin D metabolites. Vitamin D signaling is
mediated by calcitriol binding to the vitamin D receptor (VDR), which
forms a nuclear heterodimer with the retinoid X receptor. This complex
is capable of binding to genomic vitamin D response elements (VDRE),
modulating expression of a variety of genes. Renal-derived calcitriol
circulates bound to VDBP and acts as a potent hormone targeting bone,
kidneys and the intestines tomodulate calciumhomeostasis. Numerous
extra-renal tissues also activate vitamin D to calcitriol for local
regulation of multiple biological processes including immunological
recognition of self [43,44]. Calcitriol is regulated, in part, through a
biofeedback loop in which the calcitriol-induced gene, CYP24A1,
encodes an enzyme that initiates the catabolism and clearance of
vitamin D-related metabolites via hydroxylation of carbon 24.

3. Assessment of evidence for vitamin D in MS

In 1965, Sir Austin Bradford Hill proposed a set of viewpoints to aid
in assessing the evidence for a causal relationship (Panel 1) [45]. Hill's
criteria are arguably most appropriate for assessing evidence of
causality under simplistic models of cause and effect whereby a
specific outcome is attributed to a single causal agent. The criteria do
not sufficiently capture the complexity of the relationship between
causal complexes comprised of environmental and genetic risk factors
that may be variably necessary or sufficient to induce a heterogeneous
disease such as MS [46]. Nevertheless, the criteria do provide a
generally well-rounded structure for a critical evaluation of evidence
for causality.

4. Assessing the evidence for a relationship between vitamin D
status and MS: The Bradford Hill criteria

4.1. Strength

The strength of an association can be defined as the magnitude of
difference in the risk, odds, or severity of a disease outcome based on
variations in exposure to the factor of interest. A strong association
supports a causal relationship between two entities. However, a weak
association does not necessarily negate a causal relationship,
particularly if the association occurs only in certain contexts. How
strong are the links between MS and vitamin D status—as defined by
circulating 25(OH)D—or determinants of vitamin D status such as
dietary intake of vitamin D, or sun exposure?

4.1.1. Vitamin D status in utero
Several studies have demonstrated a month of birth effect in MS

cohorts. In Northern Sardinia—a region with very high MS incidence—
an excess of spring births was observed inMS cases (29.4%) relative to
their unaffected siblings (22.1%, P=0.008) and to the general
population (24.6%, P=0.036) [47]. Pooled month of birth data from
MS patients in Canada, Denmark, Great Britain and Sweden
(n=42,045) demonstrated an excess of MS cases born in May
(odds ratio (OR) 1.10, 95% confidence interval (CI) 1.07 to 1.13) and
fewer than expected births in November (OR 0.91, 95% CI 0.87 to 0.95)
[48]. Overall, the risk of MS in those born in May was 13% higher than
ence for a protective role of vitamin D in multiple sclerosis, Biochim.
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for those born in November (95% CI 5% to 22%). Given the low ambient
sunlight in winter months in the countries studied, these results could
be interpreted to suggest that low serum 25(OH)D during pregnancy
or low vitamin D in the breast milk during first fewmonths post-birth
influence subsequent MS risk [49,50].

4.1.2. Childhood sun exposure and MS risk
Four studies have demonstrated that high sun exposure in

childhood is related to a decreased risk of MS. In a case–control
study (n=126 MS and 272 controls) from Tasmania, high sun
exposure between the ages of 6 and 15 years was associated with a
decreased risk of MS (OR 0.31, 95% CI 0.16 to 0.59) even after
adjustment for skin pigmentation and smoking status prior to MS
diagnosis [3]. Furthermore, the study also found that moderate-to
high grade (grades 4–6) actinic damage, a marker for lifetime sun
exposure, was independently associated with a decreased risk of
multiple sclerosis (OR 0.32, 95% CI 0.11 to 0.88, adjusted for the same
variables and sun exposure post-MS diagnosis). Similar findings were
reported in Norway where increases in outdoor activities in early life,
particularly at 16–20 years of age, were associated with decreased MS
risk (OR 0.55, 95% CI 0.39 to 0.78) [51]. A North American study of 79
pairs of identical twins discordant for MS found that the unaffected
twin reported more sun exposure during childhood than did the twin
with MS: Each one-unit rise in the sun exposure index score (range
−9 to +9; 0 indicating no sun exposure difference, 9 indicating more
relative sun exposure compared to twin in each variable) was
associated with an OR 0.75 (95% CI 0.62 to 0.90) [52]. Finally, a
case–control study consisting of participants from Cuba, Martinique
and Sicily—regions of varying latitudes, ambient UVR, and MS
prevalences—also observed a consistently reduced risk of MS related
to measures of sun exposure before age 15, and increased risk of MS
related to sun protection practices before age 15 years of age [53]. For
instance, in multivariate analyses, weekday sun exposure of ≥1 h per
day was associated with decreased MS risk (OR 0.90, 95% CI 0.85 to
0.98) while wearing pants when exposed to sunlight was associated
with increased risk (OR 1.90, 95% CI 1.10 to 3.20). These four studies
provide evidence supporting the hypothesis that sun exposure in
childhood conveys protection against MS.

Further support for the importance of sun exposure in childhood in
determining MS risk also comes from studies investigating place of
childhood residence, migration patterns, and ethnicity of MS popula-
tions. Migration between areas of disparate MS prevalence before or
during adolescence results in the individual adopting the risk of the
new region. Migration in adulthood, however, does not influence MS
risk [54–58]. In a study comparing the ancestry of pediatric and adult
MS patients living in the same city, the pediatric MS patients were far
more likely to be first generation Canadians, and to have parents born
in world regions of low MS prevalence [59].

4.1.3. Vitamin D status prior to MS diagnosis
In a case–control study nested within a prospective cohort of over

7 million US military personnel, a decreased risk of MS (OR 0.38, 95%
CI 0.19 to 0.75) was observed among white participants (148 cases,
296 controls) with serum 25(OH)D concentrations in the highest
quintile (99.1–152.9 nmol/l) compared with the lowest quintile
(b63.3 nmol/l) [60]. This paper will be discussed further below in
the section on dose–response.

4.1.4. Vitamin D status at the clinical onset of MS
The first clinical manifestation of MS presents with acute

neurological deficits in vision, strength, balance, or sensation,
typically associated with evidence for CNS inflammation in cerebro-
spinal fluid (oligoclonal bands) and on brain imaging [61]. This first
attack of demyelination can also represent a monophasic illness
without subsequent relapses and without a future MS diagnosis.
Determination of vitamin D status at the time of this first attack
Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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provides insight into whether vitamin D status predicts individuals
destined for further relapse (and thus, confirmation of MS). Serum 25
(OH)D levels in adults recently diagnosed with MS are low relative to
controls. In a study from Finland, serum 25(OH)D concentrations
(mean±SD) were significantly lower in adults diagnosed with MS in
the period of June through September (58±3 nmol/l) compared to
healthy controls samples in the same time period (85±8 nmol/l,
P=0.022) [62].

While the impaired vitamin D status at first attack or at the time of
relapse (and MS diagnosis) provides support for vitamin D insuffi-
ciency in MS, it is also possible that low vitamin D concentrations
occur as an epiphenomenon of acute illness. Serial evaluation of
vitamin D status in individuals following a first attack are required to
determine whether vitamin D concentrations remain low in indivi-
duals destined for further relapse.

4.1.5. Vitamin D status in individuals with established MS
Further to the above discussion, low serum 25(OH)D concentra-

tions have been recorded at the time of clinical relapses in adults with
established MS. Two Finnish studies [32,62] and one Argentinian
study [63] reported that mean serum 25(OH)D concentrations
were lower during relapses than remission. Similarly, researchers
working in Tasmania reported a inverse relationship between
relapses and both estimated serum 25(OH)D (r=−0.31, p=0.057)
and erythemal UV (EUV; from EUV data 1.5 months prior to relapse;
relapse rate (r=−0.32, p=0.046)) [64]. An inverse relationship was
also observed between serum 25(OH)D levels in Tasmanian RRMS
patients and risk of relapse, with each 10 nmol/l increase in 25(OH)D
resulting in a 12% decrease in relapse risk [65] Also, amongst patients
in the USA with pediatric-onset MS or clinically isolated syndromes
(CIS), vitamin D status predicted subsequent rate of relapse: Each
25 nmol/l increase in seasonally adjusted 25(OH)D concentrations
predicted a 34% decrease in subsequent relapse rate (incidence rate
ratio 0.66, 95% CI 0.46 to 0.95) [66].

Vitamin D concentrations also correlate with some types of MRI
evidence of MS disease activity. In one study, low serum 25(OH)D
levels predicted an increased likelihood of gadolinium (Gd)-enhanc-
ing lesions in MRI scans performed in the subsequent two month
period [67]. Although, as mentioned above, lower serum 25(OH)D
was observed in relapses, serum 25(OHD did not correlate with MRI
burden of disease (mm2) [32] but, importantly, Gd-enhanced images
were not included in this study. Taken together, these results provide
support for relationship between vitamin D status and active MS
disease as measured by relapses and Gd-enhancing lesions on MRI.

Important in the interpretation of vitamin D status in individuals
with established MS is the confounding influence of disease-related
limitations in physical and outdoor activity that may result in
decreased sun exposure and thus, vitamin D status. Furthermore,
Uhthoff's phenomenon, a transient heat-induced re-emergence of
symptoms in previously demyelinated pathways, can also result in
avoidance of sun or warm environments [68]. It is thus, important to
characterize disability, physical activity and sun exposure in vitamin
D-related studies of patients with MS. It is also important to obtain a
careful dietary history that includes information on the use of vitamin
supplements. The Internet provides numerous links to studies of
vitamin D inMS and some neurologists already recommend vitamin D
to those with MS [12]; thus, it is likely that manyMS patients will take
measures to raise their vitamin D status—such as increasing consump-
tion of fortified dairy products orfish, taking vitaminD supplements or
even increasing their sun exposure. Motivation to improve vitamin D
status could be disproportionately higher in individuals with more
active disease; therefore, unless supplemental vitamin D intake is well
characterized, the ability to evaluate vitamin D status and MS disease
activity is impaired. Serial serum25(OH)Danalyses of individualswith
established MS will be important to determine whether vitamin D
concentrations remain low independent of relapse, and whether such
ence for a protective role of vitamin D in multiple sclerosis, Biochim.
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values differ between MS patients who report more or less active
lifestyles or vitamin supplementation during the period of sampling.

4.2. Consistency

The underlying principles of consistency are that the cause of the
disease should be constant across variable settings across different
times and in different populations and that the relationship remains
consistent even if other factors vary. While the relationship should
remain constant, it is important to note that the relative risk conveyed
may vary due to interactions with other factors. For example, even if
vitamin D insufficiency is consistently associated with MS risk across
diverseworld regions, the relative contribution of vitaminDmay differ
due to interactionwith variants in vitamin-D responsive genes such as
HLA-DRB1*15 [69] (Fig. 1). Furthermore, consistency of association
must be considered and evaluated to determine whether the
association alone is sufficient for disease. In other words, vitamin D
insufficiency is common in temperate climates, yet not all individuals
with low serum 25(OH)D concentrations develop MS. The absence of
MS in these individuals does not, however, negate the potential
importance of vitamin D insufficiency as a risk factor for MS.

4.2.1. Low sun exposure and MS
Discussed further in other sections, low sun or UVR exposure—a

measure that may be associated with lower circulating 25(OH)D—
from varying regions is consistently associated with increased risk of
MS [3,51–53], increased prevalence of MS [5,10,19,70], and increased
risk of MS-related mortality [71].

4.2.2. Vitamin D status in MS
Consistency of data relating to impaired vitamin D status andMS is

evidenced by studies of both adults and children with MS in Australia
[72], the United States [60,66,73–75], and Europe [32,76–78]. While
low vitamin D concentrations in MS patients have been documented
across multiple studies, a few studies have failed to demonstrate this
association [79–81] and one study found low 25(OH)D in the maleMS
patients but not in females [82]. Lacking to date are studies of vitamin
D status in world regions where MS is exceptionally rare, such as peri-
equatorial countries, Africa, and certain regions of Asia. Evidence of
vitamin D insufficiency at the time of first attack in the rare
individuals diagnosed with MS in such regions would strongly
Fig. 1. Determinants of low or impaired vitamin D status and hypothesized interme

Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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support the notion of consistency of association between vitamin D
and MS.

4.2.3. Vitamin D dependent rickets and MS
Torkildsen et al. [83] reported a case series of three adult females

with MS who, during childhood, were diagnosed with and treated
for vitamin D dependent rickets type 1 (VDDRI), a rare genetic
condition that ablates activity of the enzyme that converts 25(OH)D
to 1,25(OH)2D. The chance co-existence of this extremely rare genetic
form of rickets and MS is highly improbable. All patients received
vitamin D3 or calcitriol therapy following the diagnosis of VDDR1 and
were reported to have “normalized” serum 25(OH)D following
treatment; however, the most appropriate treatment for this
condition is calcitriol, not vitamin D, and serum concentrations of
25(OH)D were not reported. This case series suggests that risk of MS
may have been conferred pre-VDDR1 diagnosis when these indivi-
duals lacked normal vitamin D-related signaling. Further evidence for
consistency comes from follow-up study discovered that all three of
these patients carried at least one copy of the vitamin D-responsive
HLA-DRB1*15; the significance of which will be discussed in another
section [84].

4.3. Specificity

According to the Hill criteria, the likelihood of a causal relationship
increases with the specificity of the relationship between a factor and
an outcome. However, in describing the utility of this criterion, Hill
himself noted that it was the least important of the criteria and did not
always apply [45]. Furthermore, it is important to define “specificity”.
Specificity could be interpreted as a disease-specific association or
more generally as specificity at the level of biological mechanisms.
Given that calcitriol modulates expression of an as yet unknown
number of genes in many tissues and organs, the manifestations of
suboptimal vitamin D status could be relevant to many diseases and
could operate either acutely or chronically, dependent upon stage of
life, status of other nutrients [85], and genetic variants in vitamin D
metabolism [86,87] or response [69]. Vitamin D insufficiency has been
associated with systemic lupus erythematosus [88], inflammatory
bowel disease [89], asthma and allergy [90], type 1 diabetes mellitus
[91], rheumatoid arthritis, and other inflammatory disorders [92,93].
Thus, if one considers specificity as more broadly referring to
diary mechanisms underlying increased risk and severity of multiple sclerosis.
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Fig. 2.Magnitude of biological response to increasing vitaminDnutritional status. Cross-
sectional study of participants with ranges of serum 25(OH)D concentrations at either
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response related data because both groups are on plateaus of the Biological Response
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inflammation or misdirected immunological recognition of self
tissues, then an argument for specificity between vitamin D status
and MS (as a representative disease) can be made.

4.4. Temporality

An important determination of causality is evidence that the
exposure precedes outcome. If impaired vitamin D status increases
risk of MS, then it can reasonably be expected that vitamin D
deficiency or suboptimal vitamin D status would precede MS onset.

Serum 25(OH)D levels are rarely evaluated in apparently healthy
individuals prior to the onset of disease; however, one study did
demonstrate that vitamin D status in early adulthood was inversely
related to subsequent MS risk [60].

In the absence of serum 25(OH)D measures, other studies have
used season, latitude, and questionnaire-based data regarding diet and
sun exposure as proxies for estimated vitamin D status prior to disease
onset. Studies examining the month of birth have revealed a deficit of
MS births in November [48,94], and an excess of MS in spring births
[47,48,95]. The vitamin D-sensitive HLA-DRB1*15 risk allele interacts
with the season of birth such that the reported relationshipwith risk of
MS appears to be predominately driven by those carrying at least one
copy of theDRB1*15 risk allele [96]. Also, earlier disease onset has been
reported among MS patients born during winter in low UVR locations
vs. those born in other seasons in locations with higher ambient UVR
[97]. Together, these findings suggest that low vitamin D inmid to late
pregnancy—due to the low ambient UVB in winter and early spring—
may contribute to increased MS risk. Also, as previously discussed,
several retrospective studies demonstrated that greater sun exposure
during childhood and adolescence was associated with a reduced risk
of adult-onset MS [3,51–53] although these retrospective reports of
childhood sunlight exposure in patients with adult-onset MS are
challenged by the accuracy of recall. Migration from the tropics—with
year round UVB sufficient to catalyze vitamin D synthesis—to
temperate regions before or during adolescence, but not afterwards,
confers increased risk of MS [58]. Sun exposure is arguably the most
important predictor of vitamin D status; thus, the implication of these
studies is that low sun exposure, hence a high likelihood of impaired
vitamin D status, is associated with increased risk of MS later in life.
Regarding vitamin D supplemental intake, women who reported
consuming vitamin D supplements≥400 IU/day prior to onset of MS
were less likely to be diagnosed with MS compared to those who did
not take vitamin D supplements [98]. These studies, conducted using
differing methods in unique populations and regions strongly infer an
important contribution of timing of vitamin D insufficiency and
subsequent risk.

4.5. Biological gradient (dose–response)

Further evidence for vitamin D as an important determinant in MS
can be considered in terms of (i) the degree of vitamin D insufficiency
and relative risk of MS; and (ii) the extent of vitamin D supplemen-
tation and disease risk or clinical disease response.

Evidence to support a dose–response relationship between
vitamin D insufficiency and MS risk comes from studies evaluating
serum 25(OH)D concentrations prior to and at the time of clinical
onset of MS. In one study, risk of MS in mid-adulthood in young white
adults (mean age 23 years) decreased significantly with increasing
serum 25(OH)D concentrations: the odds ratio of MS associated with
a 50 nmol/l increase in 25(OH)D was 0.59 (95% CI 0.36–0.97) [60].

When evaluating dose–response aspects of causation, it is
important to consider whether the doses being evaluated are in the
range relevant to the disease. A threshold effect may well exist, in
which biological impact is notable only once this threshold is
exceeded. For instance, in the 2006 Munger et al. paper [60], the
authors reported a significantly lower risk ofMS inwhite patientswith
Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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serum 25(OH)D over 99.1 nmol/l but did not find a significant
association between vitamin D status and risk of MS in the black or
Hispanic patients (n=109 cases, 218 controls). More than 66% of the
black and Hispanic participants had serum 25(OH)D concentrations
below 50 nmol/l and the highest serum 25(OH)D concentration was
only 97.9 nmol/l and a protective effect of vitamin Dwas not observed.
However, if circulating 25(OH)D concentrations needed to exceed
99 nmol/l to confer benefit, then a benefit of vitamin D would not be
expected in these groups since the maximum 25(OH)D concentration
was below 99 nmol/l. The ability to detect a dose–response requires
study of populations that have serum 25(OH)D concentrations
spanning the biologically relevant threshold of effect (Fig. 2).

Dose–response or a biological gradient can also be considered in
terms of the observed latitude gradient and varying amounts of UVR.
The rate of first demyelinating events in Australia increased by 9.6%
(95% CI 7.4 to 11.8) per higher degree of latitude [99], and in both
North America and France, studies demonstrated that risk of MS
increases with decreasing regional UVR [10,19,70,100]. A recent study
compiled global MS prevalence data from 54 studies and calculated
the degree of risk contributed by numerous factors. The authors report
a highly statistically significant inverse correlation between regional
annual available UVR and MS prevalence; the relationship between
UV andMS prevalence was so strong that it surpassed the effects of all
of the other risk factors by at least 20-fold [5].

In a pooled analysis of data from Canada, Denmark, Great Britain
and Sweden, the OR for increased risk of MS outcome in May births
compared to November births was calculated. When the countries
were examined individually, the risk of MS outcomewas proportional
to MS prevalence in each country and, with the exception of Sweden,
increased with the average latitude of residence for the counties'
population—with risk being highest in Scotland (OR 1.89, 95% CI 1.09
to 3.28), intermediate in Denmark (OR 1.22, 95% CI 1.08 to 1.38) and
lowest in Canada (OR 1.13, 95% CI 1.05 to 1.22) [48].
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4.6. Plausibility

Clearly an important aspect of the Hill criterion is biological
plausibility. What do we know about mechanisms that could be
responsible for the relationship between vitamin D status and MS?

4.6.1. Animal studies
Biological plausibility is often easier to study in-depth in animal

models of disease than in humans, and an inducible model of CNS
inflammation, termed experimental autoimmune encephalomyelitis
(EAE), in mice or rats provides such an opportunity for exploring the
effect of vitamin D and calcitriol on EAE induction, severity and
amelioration.

Administration of calcitriol prior to EAE induction prevented
symptoms from developing [101–105]. Interestingly, an analog of
calcitriol also demonstrated synergistic benefit when administered
with interferon beta (IFN-β) [106] and additive effects with
cyclosporine in the prevention of EAE [107] Calcitriol per se has
attenuated symptomswhen administered after induction of EAE [108]
and has also reversed established EAE [109]. A variety of mechanisms
underlying these effects have been proposed. Some of the calcitriol-
related observations in EAE have been mediated via a reduction in
monocyte activation [110], reducedmacrophage accumulation within
the CNS, reduced proliferation of self-reactive T lymphocytes in the
CNS [109] and increased apoptosis of pro-inflammatory cells [111].
Also, one study of EAE, demonstrated that IL-10 signaling was
essential for the calcitriol-mediated inhibition of EAE [104].

A recent set of experiments sought to evaluate the effect of
relatively acute pre-induction and post-induction UVR exposure on
EAE [112]. Although the authors concluded that UVR suppressed EAE
independent of vitamin D3 production, the circulating 25(OH)D levels
at the time of EAE disease induction may have actually influenced EAE
disease severity. In the first experiment performed, 25(OH)D
concentrations were similar across groups at the time of EAE
induction—despite differing pre-induction UVR protocols—and all
groups experienced a similar EAE outcomes. In contrast, in the second
study, 25(OH)D levels in the groups pre-treated with UVR were
significantly higher than controls on the day of disease induction than
in controls, and EAE was most severe in the control group. This
difference in EAE outcome was observed despite the fact that
circulating 25(OH)D concentrations did not remain higher in the
UVR-treated groups post-induction. Thus, these UVR exposure studies
suggest that UVR-stimulated vitamin D production prior to disease
induction may affect subsequent EAE outcome.

Furthermore, some EAE studies have demonstrated that the effects
of supplementationwith vitamin D per se differ based on the sex of the
animal. Vitamin D3 supplementation prior to induction of EAE reduced
signs of MBP-induced EAE in female mice but not in males or
ovariectomized females [113]. In a follow-up study [114], administra-
tion of physiologically equivalent doses of 17β-estradiol (E2) restored
the vitamin D3-mediated inhibition of MBP- and MOG35–55-induced
EAE in ovariectomized mice but did not reduced signs of EAE in the
MOG35–55-induced males. The authors reported synergistic interac-
tions of vitamin D3 and E2 as the potential mechanism underlying the
findings: Circulating E2 was significantly elevated in the vitamin D3

supplemented intact females mice, E2 enhanced VDR expression
within the central nervous system, and E2 decreased expression of the
vitamin D degradation enzyme, CYP24A1 [114]. In light of reported
differences in cytokine profiles of MS between male and female
patients [115], significant sex-based differences in the relationship
between latitude and incidence of first demyelinating events observed
in Australia [99], and the well-recognized—and increasing—female
preponderance in MS [116,117], these sex-specific aspects of
vitamin D in EAE are intriguing. They also support the need for future
studies to evaluate whether vitamin D insufficiency is of particular
concern in femaleMS patients, orwhether vitamin D supplementation
Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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may be of greater benefit in females for both the prevention and
treatment MS [118].

4.6.2. Biological plausibility based on vitamin D–genetic
interactions in humans

One of the strongest mechanistic links between vitamin D and MS
comes from a recent study demonstrating that calcitriol modulates
the expression of the particular HLA-DRB1 allele most consistently
associated with increased risk of MS, HLA-DRB1 *1501 [69].
Investigation of the major candidate genes, HLA-DRB1, HLA-DQA1
and HLA-DQB1 led to discovery of a conserved, functional vitamin D
response element (VDRE) in the promoter region of the HLA-
DRB1*1501 allele. Given that HLA-DRB1*15 was the only variant
identified as having a functional VDRE in the promoter, expression of
the other DRB1 variants would not be expected to be sensitive to
vitamin D status. Among those carrying the vitamin D-responsive
DRB1*15 allele, vitamin D deficiency or impaired vitamin D
metabolism may lead to lower expression of the MHC Class II
molecule [1]. Reduced expression of MHC Class II molecules could
impair presentation of self-antigens during negative selection,
resulting in a lack of tolerance being established against those self-
antigens. If the immune system fails to establish and maintain
immune tolerance to molecules derived from the blood brain barrier
(BBB) or CNS myelin, this could result in the type of demyelinating
immune attacks observed in MS. Alternatively, it could be that the
high levels of MHC present in the context of vitamin D sufficiencymay
contribute to activation-induced cell death of overly activated CNS-
reactive cells; a decrease in MHC due to vitamin D deficiency may
weaken the strength of signal, and permit survival of cells that should
be removed. On the other hand, this finding could even suggest a
deleterious relationship whereby elevated vitamin D status increases
expression of this risk gene, thus increasing antigen presentation and
immune stimulation. However, this is not supported by the
circumstantial evidence [1,96,119]. While the functional consequence
of this finding is yet to be determined, it does form a conceptual basis
for a nutrient–gene interaction; thus connecting the genetic and
environmental evidence implicating sunlight and vitamin D in the
determination of MS risk.

4.6.3. Biological plausibility based on vitamin D interactions with human
cell cultures

Calcitriol down-regulates pro-inflammatory dendritic cell (DC)
and T-helper lymphocyte 1 (Th1) activation and response, promotes
an anti-inflammatory Th2 lymphocyte profile, suppresses the antigen
presenting capacity of macrophages and DCs, and decreases prolifer-
ation of pro-inflammatory T lymphocytes [63,119–128]. In terms of
cytokine profiles, calcitriol decreases production of pro-inflammatory
cytokines such as IFN-γ [120,129], IL-2 [130–132], and TNF-α
[120,124,133] while enhancing the secretion of the anti-inflammatory
cytokine, IL-10 [63,121].

Various in vitro models have demonstrated that calcitriol also
suppresses expression or reduces mRNA stability of matrix metallo-
proteinase 9 (MMP-9) [134–140] which increases the permeability of
the blood–brain barrier to auto-reactive immune cells. MMP-9 is
elevated in patients with MS, particularly RRMS and secondary
progressive MS (SPMS) [141–143] and is also elevated during MS
relapses [144]. This suggests that in addition to beneficial immune
modulating effects, vitamin D could alter egress of immune cells into
the CNS.

4.7. Coherence

Any causal relationship should be relatively compatible with
observations of the natural history andbiology of the disease. Common
mechanisms may even be identified that explain similar effects of
different risk factors on MS. Regarding common mechanisms of risk
ence for a protective role of vitamin D in multiple sclerosis, Biochim.
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factors in MS, Fig. 1 illustrates plausible interactions between putative
factors involved in the pathobiology of MS outlined in this section.

It is important to consider the vitamin D-related evidence in the
context of other identified risk factors for MS, including as sex,
smoking, infections such as Epstein Barr virus (EBV) and genetics
(discussed in relation to HLA, above).

Female sex is clearly over-represented in adolescent and adult-
onset MS [117,145], and the animal studies performed to date support
a differential response to vitamin D supplementation per se in females
with intact ovaries [113] and in ovariectomized females given
physiologic levels of estrogen, compared to males or estrogen-
deficient ovariectomized females [114]. Gender differences in cyto-
kine profiles and vitamin D status in MS have been the subject of
recent review [118], further highlighting the possibility of sex-based
differences in the relationship between vitamin D status and MS
disease activity.

Cigarette smoking and exposure to cigarette smoke has been
linked to increased MS risk ([146] and reviewed in [147]) and worse
outcomes in those with established MS [148]. Smoking induces a pro-
inflammatory milieu that may be exacerbated by concurrent vitamin
D insufficiency. A combustion product from cigarette smoke, benzo[a]
pyrene (B[a]P), enhanced in vitro breakdown of vitamin D in human
macrophages [149], suggesting that smoking may exacerbate vitamin
D insufficiency in immune cells (Fig. 1). That B[a]P is only produced
when tobacco is smoked, may be one explanation for why tobacco
smoking—not Swedish snuff use—was associated with increased risk
of MS [150].

Immune reactivity to viral infection serves not only as a critical
aspect of human survival, but may also contribute to stimulation of
aberrant immune activity. Prior infection with EBV has been strongly
associated with MS risk [151–153]; an interaction between vitamin D
status and viral infection is plausible. In both children and adults,
impaired vitamin D status has been associated with increased risk of
viral infection [154,155], and in a recent wintertime randomized,
double-blind, placebo-controlled trial, vitamin D3 reduced risk of
influenza A virus in children [156]. Thus, it is possible that low vitamin
D status may increase susceptibility to infection with EBV [20,157].
Furthermore, a possible interaction between microbial infection and
vitamin D status in MS has been proposed based on the interaction of
both infection and vitamin D on the production of the anti-
inflammatory cytokine, IL-10 [158]. For instance, production of viral
IL-10 by Epstein Barr virus (EBV) could conceptually down regulate
human IL-10 production, which would be further suppressed in the
presence of vitamin D insufficiency. This overall could lead to an
enhanced pro-inflammatory state [25] (Fig. 1). While these interac-
tions remain largely speculative at this point, they all provide avenues
for further research that might serve to enhance the biological
plausibility of vitamin D in MS.

Beyond environmental determinants, serum 25(OH)D concentra-
tions are also under some genetic control [79,87,159,160]. Studies of
genes involved in vitamin Dmetabolism have revealedmixed findings
regarding the relationship between certain variants andMS risk [161–
166]. Further investigation of such genes in highly informative
individuals—either those with markedly impaired vitamin D status
or individuals diagnosed with MS despite residence in world regions
with high ambient UVR—might provide novel information that may
link specific aspects of vitamin D metabolism to MS.

4.8. Experiment

A causal association is considered to be one in which a change in
the exposure results in a corresponding change in the outcome of
interest. While double-blind, placebo-controlled experimental or
intervention studies have the potential to produce the strongest
evidence for a role of vitamin D in MS, they are limited in that it is
obviously unethical to withhold an essential nutrient from patients in
Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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the placebo arm to determine whether low vitamin D increases MS
risk or disease activity. Thus, in humans, experimental evidence for a
causal role of vitamin D in reducing MS disease severity comes from
vitamin D or calcitriol supplementation studies.

To date, primary prevention trials have not yet been attempted in
humans to determine whether optimizing vitamin D status will
reduce risk of MS. There are, however, a limited number of small
studies that have explored vitamin D—and even calcitriol—supple-
mentation in adults with established MS; such studies primarily
demonstrate the safety profile of vitamin D supplementation, and
provide a preliminary view into efficacy.

In a double-blind, placebo-controlled trial, 17 adults with MS
received 800 mg calcium plus 1000 IU/day vitamin D over 6 months
while 20 adults received calcium alone [73]; only biochemical
outcomes were reported. Vitamin D supplementation increased
serum 25(OH)D levels from a mean of 42.5 to 72 nmol/l while
serum 25(OH)D did not change in the placebo group. Vitamin D
supplementation increased TGF-β1 but did not change concentrations
of the pro-inflammatory cytokines, TNF-α or IFN-γ, nor the anti-
inflammatory IL-13. The mean resultant serum 25(OH)D concentra-
tion in the vitamin D group did not reach the estimated minimum
concentration for sufficiency (75 nmol/l) [42], which may have
limited the ability to detect a significant effect (Fig. 2). On the other
end of the vitamin D status spectrum, a phase I (safety or dose-
finding) study administered 1200 mg elemental calcium plus doses of
vitamin D3 that increased from 4000 to 40,000 IU/day to 12 patients
with active MS over 28 weeks. Mean serum 25(OH)D concentrations
at baseline were already just within the estimated range of sufficiency
at 78 nmol/l and they increased significantly to 386 nmol/l with no
adverse events, changes in liver enzymes, electrolytes, or serum
calcium, creatinine, or protein observed [80]. The number of Gd-
enhancing lesions decreased from a mean 1.75 to 0.83 per patient
(P=0.03) while relapse rate, EDSS scores and ambulation indices
remained stable. A follow-up study, an open label phase I/II study of
49 adults with relapsing–remitting MS receiving 1000 mg calcium
plus vitamin D3 in doses escalating from 4000 to 40,000 IU/day [167].
In the vitamin D treatment arm, mean serum 25(OH)D increased from
78 to 413 nmol/l without adverse clinical or biochemical outcomes. A
statistically significant decrease in neuronal antigen-induced T-cell
proliferation was observed after 1 year compared to baseline values
and to age-, sex- and treatment-matched controls at one year. The
vitamin D3 intervention also resulted in a statistically significant
decrease in annualized relapse rates (ARR) compared with the
previous year. Goldberg et al. [168] supplemented 10 adult MS
patients with a lower dose of vitamin D3 (5000 IU/day in cod liver oil)
and body-weight defined doses of calcium, magnesium and demon-
strated a statistically significant reduction in relapses by 12 to
24 months; unfortunately, serum 25(OH)D concentrations were not
reported at baseline or end of study. Importantly, none of these
studies, particularly the Kimball and Burton studies administering up
to 40,000 IU/day, reported adverse outcomes or biochemical indica-
tion of vitamin D toxicity—hypercalcemia or hypercalciuria—even
though they provided calcium in addition to vitamin D at doses above
the current North American Dietary Reference Intake's (DRI's) adult
“adequate intake” (AI) of 400 IU/day [73] and in excess of the current
2000 IU/day “Tolerable Upper Intake Level” (UL) [169]. These studies
were relatively short-term and it is unclear whether the observed
benefits could be replicated by providing vitamin D alone or whether
it must be in combination with a calcium supplement.

In a single trial that administered calcitriol, rather than vitamin D3,
a reduction in relapse rate of 27% was noted [170]. However, in
contrast to the vitamin D supplementation trials, this 48-week trial of
calcitriol therapy led to mild hypercalcemia, even among patients
compliant with the calcium-restricted diet protocol, highlighting the
challenge and potential for toxicity in administering the non-nutrient,
hormonal form of vitamin D [171].
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4.9. Analogy

According to this criterion, a potential risk factor may be more
readily accepted as a cause of a disease if a similar factor has already
been shown to cause the same or related disease. As mentioned above
under the criterion of specificity, vitamin D insufficiency is a presently
a candidate risk factor for some other diseases that share the
similarity of being immune-mediated inflammatory disorders. Thus,
this co-existing interest in vitamin D as a common putative risk factor
in numerous immune-mediated inflammatory diseases provides
preliminary analogous evidence for a role of vitamin D in MS.

5. Discussion

The most obvious question remaining is whether optimizing
vitamin D status will reduce the risk MS or be of therapeutic benefit
following onset of disease. Embedded in that question are three
others: Is there a window of susceptibility in which vitamin D status is
most critical; what dose or doses are safe and effective; and will oral
supplementation with vitamin D provide the same apparent benefits
as cutaneously derived vitamin D due to UVR exposure?

Regarding the stage of life, studies demonstrating that birth season
[47,48,97], childhood sun exposure [3,51,52], and migration before
adulthood [54,56–59,172–174] can affect subsequent MS risk, suggest
that interventions may need to begin as early as the prenatal time
period. Further study must not only define whether intervention with
vitamin D reduces risk of MS but must also define the time of life
within which vitamin D-related risk reduction is operative, the doses
needed to optimize vitamin D status in different populations and at
different life stages, and whether or not optimal calcium intake is
essential for benefit. A primary prevention trial would require an
ambitious, relatively long-term international collaborative effort that
could be aided by focusing interventions on women of childbearing
age, infants, children and adolescents at increased genetic risk of MS
[175] in countries reporting the highest prevalence and incidence of
MS such as Hungary, the United Kingdom, Norway and Canada [176].

Consideration of vitamin D as a therapeutic agent for establishedMS
will require further information on dose and efficacy. However, apart
from the potential disease-modifying effects of vitamin D, there is
already good rationale to encourage vitamin D supplementation for MS
patients: As previously discussed, low 25(OH)D levels are frequently
observed in patients with established MS [32,62,67,72–78], and many
MS patients have low bone mineral density, increased risk of fracture,
and possessmultiple risk factors for osteoporosis [30,74,75,77,177,178].
Compromised vitamin D status exacerbates bone loss and increases risk
of fractures [179]. Vitamin D3 supplementation is relatively simple,
inexpensive and, in contrast to calcitriol, is safe even in doses that
exceed of the current UL (2000 IU/day) by several fold in adults
[80,167,180]. The safety profile of vitamin D in pediatrics is less well
defined. A recent review of the available literature indicates that intakes
in excess of the current vitaminDAI of 200 IU/day from infancy through
adolescence are safe and even necessary for optimizing growth and
bone health [181].

Given the risks associated with both acute and chronic UVR
exposure [182] and the challenge in establishing a UVR dose to
produce and maintain a certain level of circulating 25(OH)D [35], MS
clinical trials have, thus far, tested the effects of oral vitamin D
supplements rather than UVR exposure. However, ingested vitamin D
does not completely reproduce the effects of UVR exposure: UVR
stimulates neuroendocrine [183] and immune-modulating [184]
pathways that may function independently of vitamin D production
or that may act in concert with vitamin D produced in the skin. It is,
thus, plausible that achievement a particular range of circulating 25
(OH)D via controlled UVR exposure could result in significantly
different immune-related and clinical outcomes as compared to the
same 25(OH)D levels achieved via oral vitamin D supplementation.
Please cite this article as: H.E.C. Hanwell, B. Banwell, Assessment of evid
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Whether or not the non-vitamin D, UV-stimulated mechanisms do, in
fact, also contribute to the apparent benefit conferred by UVR on MS
risk remains unclear.

In summary, the available evidence for vitamin D in MS reasonably
fulfills all but one of Hill's criteria; it is that remaining criterion—of
disease prevention by intervention—that is most critical. The logistics
and demands of this type of primary prevention study are daunting,
given the relatively low incidence of MS (generally b10 per 100,000
per year), the variable age of MS onset, and the uncertainty about the
optimal dose or the optimal period of life to target.
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