The lungs can activate vitamin D locally – a Vitamin D inhaler might be possible – Aug 2016


Vitam Horm. 2011 ; 86: 217-237. doi:10.1016/B978-0-12-386960-9.00009-5.
Sif Hansdottir, MD, MS* and Martha M. Monick, PhD*

  • Department of Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242

I, Henry Lahore, have been using Vitamin D topically with great success for many years.
In general local application of Vitamin D appears to be at least 10 times better than if taken orally
Just a few weeks ago (Oct, 2016) I wondered if Vitamin D could be applied locally to the lungs
There are low-cost (~$30) nebulizers on Amazon which put a very fine mist with ultrasonics -115KHz) , 0.5 to 5 micrometer
It might be possible to just put some water-soluble vitamin D powder into water in an atomizer
A Vitamin D inhaler/atomizer/nebulizer might be very useful for some kinds of respiratory problems -such as
  Asthma, Pneumonia, Wheezing, COPD, Respiratory Tract Infections, respiratory allergies, second hand smoke, . .
3 million molecules of Vitamin D per alveoli (500 million alveoli in lungs, 1.5 trillion molecules in 40 IU of Vit D)

Update Nov 29: Inhaled Vitamin D water from purchased nebulizer - lungs feel much better in < 1/2 hour.
Dec 4: continuing to use it daily. Guess: I inhale 500 IU of vitamin D in 30 seconds
Powder of 50,000 IU Vitamin D capsule dissolved in 5 tablespoons of water
Pour off or filter the water thur a coffee filter so as to keep the cellulose from clogging the inhaler
Seems pointless to try to get FDA approval for this
Anyone can buy similar products and use them at home
See also VitaminDWiki

See also VitaminDWiki - activation outside of the lungs, liver-kidneys

Breathing category starts with the following

275 items in Breathing category

Note the Inhaled Vitamin D and blue arrow from cells to lung in the following chart


click on chart for details

 Download the PDF from VitaminDWiki

Our understanding of vitamin D metabolism and biological effects has grown exponentially in recent years and it has become clear that vitamin D has extensive immunomodulatory effects.
The active vitamin D generating enzyme, 1a-hydroxylase, is expressed by the airway epithelium, alveolar macrophages, dendritic cells and lymphocytes indicating that active vitamin D can be produced locally within the lungs.
Vitamin D generated in tissues is responsible for many of the immunomodulatory actions of vitamin D.
The effects of vitamin D within the lungs include increased secretion of the antimicrobial peptide cathelicidin, decreased chemokine production, inhibition of dendritic cell activation and alteration of T cell activation. These cellular effects are important for host responses against infection and the development of allergic lung diseases like asthma. Epidemiological studies do suggest that vitamin D deficiency predisposes to viral respiratory tract infections and mycobacterial infections and that vitamin D may play a role in the development and treatment of asthma. Randomized, placebo controlled trials are lacking but ongoing.

Section from the PDF


Humans get vitamin D through synthesis in the skin following UVB exposure and to a lesser extent from limited dietary sources. Vitamin D from the skin or diet is metabolized primarily in the liver to 25-hydroxyvitamin D3 (25D) (Ponchon, Kennan et al. 1969). 25Dis the “storage form” of vitamin D and is used to determine the vitamin D status of individuals.

The last and rate limiting step in the synthesis of “active” 1,25-dihydroxyvitamin D3 (1,25D) is catalyzed by the mitochondrial enzyme 1a-hydroxylase and is conventionally known to take place in the kidneys. Renal 1a-hydroxylase activity is under stringent regulation by parathyroid hormone, calcium, calcitonin, phosphorus and 1,25D itself (ZEHNDER, BLAND et al. 1999). Vitamin D is inactivated by the ubiquitous enzyme, 24- hydroxylase, whose expression is inducible by 1,25D, thus creating a negative feedback loop (Holick 2007). The biological effects of vitamin D are achieved through the regulation of gene expression mediated by the vitamin D receptor (VDR) (Baker, McDonnell et al. 1988). Active vitamin D binds to VDR and upon ligand binding, the receptor dimerizes with the retinoic X receptor (RXR) (MacDonald, Dowd et al. 1993). The VDR/RXR complex binds to vitamin D responsive elements (VDREs) within the promoter regions of vitamin D regulated genes (Sutton and MacDonald 2003).
It is increasingly recognized that localized synthesis of 1,25D rather than systemic production is responsible for many of the immune effects of vitamin D. Extra-renal expression of 1a-hydroxylase has been found in various cells of the immune system including alveolar macrophages (Adams, Sharma et al. 1983; Reichel, Koeffler et al. 1987), dendritic cells (Fritsche, Mondal et al. 2003; Hewison, Freeman et al. 2003; Sigmundsdottir, Pan et al. 2007) and lymphocytes (Chen, Sims et al. 2007; Sigmundsdottir, Pan et al. 2007) as well as in airway epithelia (Hansdottir, Monick et al. 2008) (Table 1). Locally formed 1,25D acts in an autocrine or paracrine fashion to modulate cell proliferation, cell differentiation and immune function (Bell 1998; Hewison, Burke et al. 2007; White 2008).

See also web

Short URL = is.gd/Inhale1

This page is in the following categories

Attached files

ID Name Comment Uploaded Size Downloads
7882 Inhale March 2017.jpg admin 26 Mar, 2017 19:50 110.69 Kb 131
7433 Inhaler.jpg admin 03 Dec, 2016 16:04 9.37 Kb 224
7360 Vitamin D effects on lung immunity and respiratory diseases.pdf PDF admin 18 Nov, 2016 22:33 905.56 Kb 115
See any problem with this page? Report it to the webmaster.