This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike License</u>. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.



Copyright 2006, The Johns Hopkins University and Parul Christian. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.



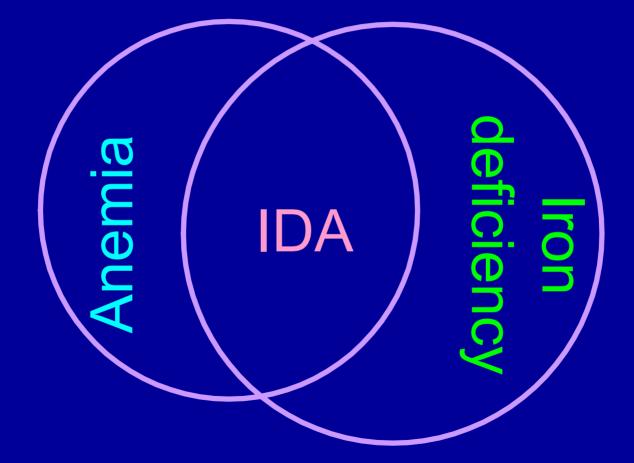
## Iron Deficiency and Anemia Causes, Consequences, and Solutions

Parul Christian International Nutrition 2005

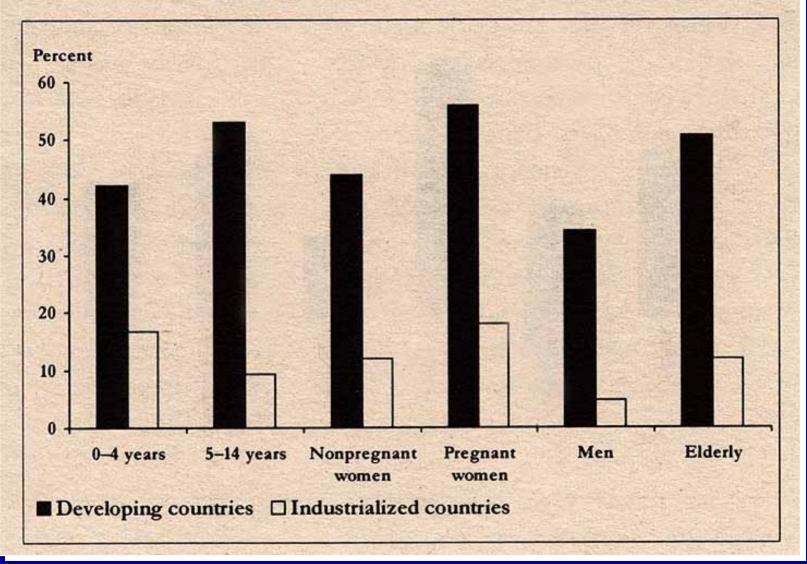
## Outline

- Anemia, ID, IDA Global burden
- Iron requirements
- Etiology of IDA
- Functional and health consequences of ID and anemia
- Iron-infection interaction
- Strategies for combating iron deficiency and anemia

## **Biologic Importance of Iron**

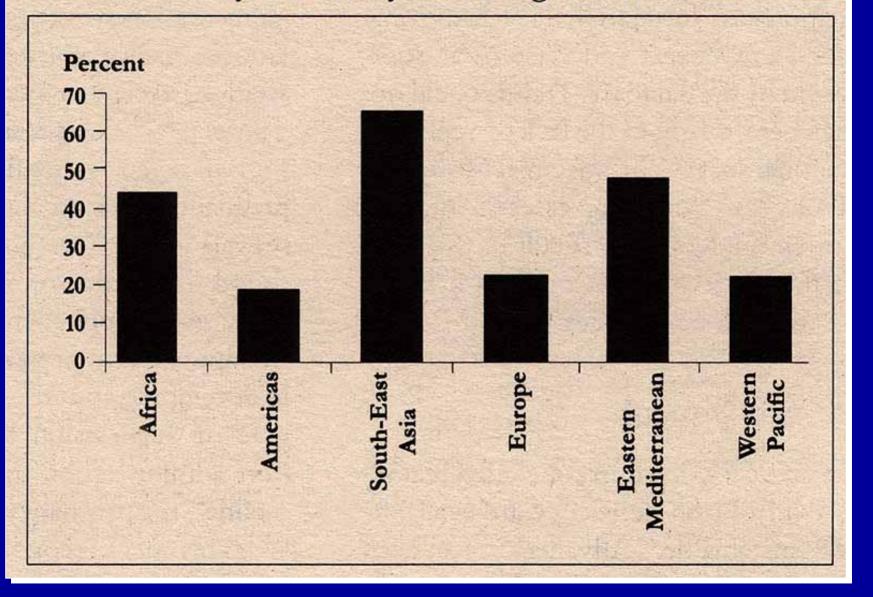

- Iron is essential for almost all living organisms
  - Participates in oxidative and reductive processes as part of redox enzymes and thus plays an essential role in oxidative energy production
  - Involved in oxygen transport as part of the heme molecule

## Iron deficiency

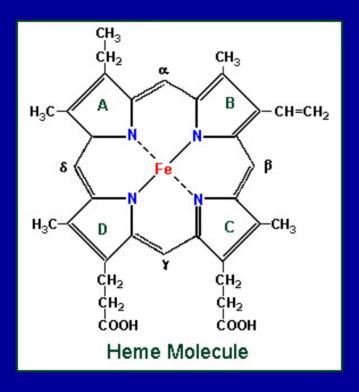

Importance

Iron deficiency is the most prevalent nutritional deficiency in the world, and probably the most important micronutrient deficiency in the US. Globally, it is estimated to affect 1.25 billion people

## Iron deficiency vs. anemia




#### FIGURE 2.1 : Prevalence of anaemia by age group in industrialized and developing countries, 1998




ACC/SCN 4<sup>th</sup> Report on World Nutrition Situation, Jan 2000

#### FIGURE 2.2 : Prevalence of anaemia in children 0-5 years old by WHO region, 1998



ACC/SCN 4<sup>th</sup> Report on World Nutrition Situation, Jan 2000



## **Iron compounds** (approx. values for a 55 kg woman)

| Functional Compounds | Hemoglobin          | 1700 mg |
|----------------------|---------------------|---------|
|                      | Myoglobin           | 222 mg  |
|                      | Heme enzymes        | 50 mg   |
|                      | Non-heme<br>enzymes | 55 mg   |
|                      | Transferrin         | 3 mg    |
| Storage Complexes    | Ferritin            | 200 mg  |
|                      | Hemosiderin         | 70 mg   |
| Total                |                     | 2300 mg |

## Comparison of screening and definitive measurements of iron status

| Screening                 | Advantages                                                        | Limitations                                                 |
|---------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|
| 1. Hemoglobin             | Inexpensive, Universally available                                | Low sensitivity, Low specificity                            |
| 2. Transferrin saturation | Inexpensive, Well<br>established                                  | Wide diurnal variation, Low specificity                     |
| 3. Mean corpuscular Hb    | Well available, established                                       | Late indicator, low specificity                             |
| 4. Zinc protoporphyrin    | Portable assay, Inexpensive                                       | Automation difficult, Affected by lead exposure             |
| Definitive                |                                                                   |                                                             |
| 1. Serum ferritin         | Quantitative (stores), well standardized                          | Affected by inflammation, liver disease                     |
| 2. STfr                   | Quantitative (tissue<br>deficiency) unaffected by<br>inflammation | Affected by recombinant human erythropoietin                |
| 3. Bone-marrow iron       | Well established, high specificity                                | Affected by EPO treatment, invasive, expensive, error-prone |

Cook JD; Best Pract Res Clin Haematol 2005

## Quantitative assessment of body iron

Body iron (mg/kg) = -[log (R/F ratio) – 2.8229]/0.1207

R = transferrin receptor F = ferritin

Cook JD; Blood 2003

## Defining anemia at sea level

| Age or Sex group   | Hb below | Hematocrit |
|--------------------|----------|------------|
|                    | g/dL     | below %    |
| Children 6mo-5 y   | 11.0     | 33         |
| Children 5-11 y    | 11.5     | 34         |
| Children 12-13 y   | 12.0     | 36         |
| Non-pregnant women | 12.0     | 36         |
| Pregnant women     | 11.0     | 33         |
| Men                | 13.0     | 39         |

Stoltzfus & Dreyfuss; INACG/UNICEF/WHO 1998

## **Dietary Iron**

- Two types of iron
  - Heme iron (animal sources)
  - Non-heme iron (plant sources)
- Absorption of heme iron is 20-30%
- Absorption of non-heme iron varies between 1-10% and is much more affected by iron status and intraluminal factors

## **Non-heme Iron Absorption**

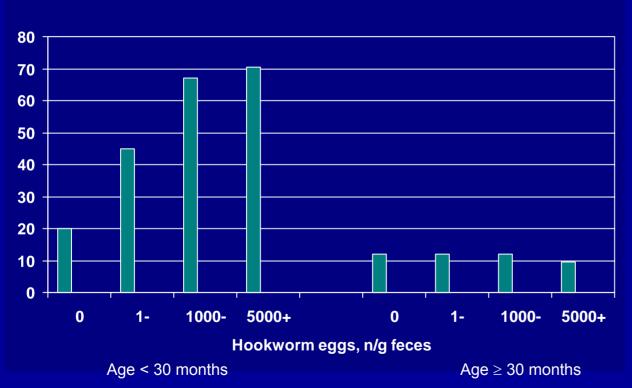
- Enhancers : ascorbic acid, meat
- Inhibitors : phytates, phosphates, tanins, oxalates, soy protein
- Other nutrients: zinc, calcium

## Iron requirements for growth

| Group    | Age (y) | Wt gain<br>(kg) | Mg iron/kg<br>body wt | Mean iron for growth (mg/d) |
|----------|---------|-----------------|-----------------------|-----------------------------|
| Children | 0.25-1  | 4.2             | 37                    | 0.65                        |
|          | 1-2     | 2.4             | 37                    | 0.24                        |
|          | 2-6     | 7.9             | 40                    | 0.22                        |
|          | 6-12    | 20.2            | 41                    | 0.38                        |
| Boys     | 12-16   | 26.2            | 46                    | 0.66                        |
| Girls    | 12-16   | 15.2            | 43                    | 0.36                        |

## Iron Losses Men and Post-menopausal Women

| Area of loss       | Amount (mg/d) |  |
|--------------------|---------------|--|
| Feces              | 0.2-0.5       |  |
| Urine              | 0.2-0.3       |  |
| Sweat, hair, nails | 0.2-0.5       |  |
| Total              | 0.8-1.0       |  |


## Iron Losses (Menstruating women - 55 kg) •Additional loss of 0.5 mg/d of Fe occurs due to menstruation; range is high

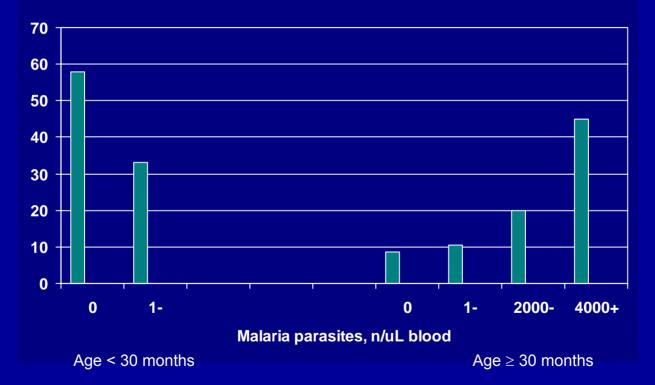
|                     | Basal Fe<br>loss | Menstrual<br>Fe loss | Total Fe<br>loss |
|---------------------|------------------|----------------------|------------------|
|                     |                  | μg/kg/d              |                  |
| No<br>contraceptive | 14               | 8                    | 22               |
| Oral contraceptive  | 14               | 4                    | 18               |
| IUD                 | 14               | 16                   | 30               |

## **Causes of anemia**

- Major causes
  - Iron deficiency (1300-2200 m)
  - Hookworm (876 m)
  - Vitamin A deficiency (300 m)
  - Malaria infection (300 m)
- Other Important causes
  - Chronic infections: TB, HIV
  - Other vitamins
  - Genetic defects

### Hookworm and Malaria in the Etiology of Iron Deficiency and Anemia

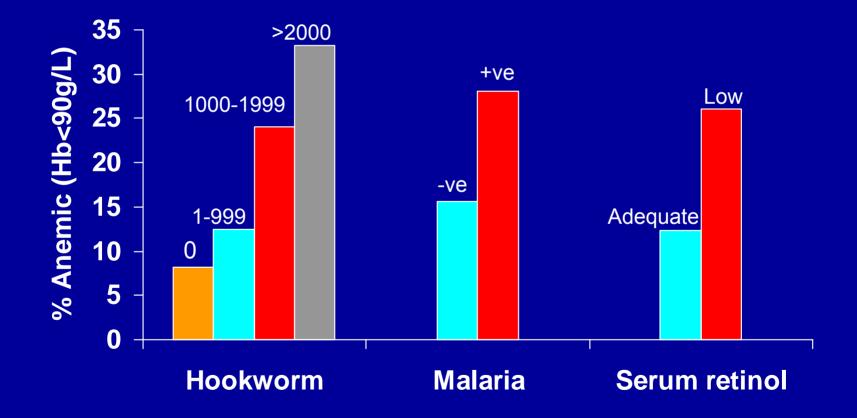



% severe anemia (Hb <80 g/L)

Proportion of Zanzibari children with severe anemia (hemoglobin <80 g/L) by malaria parasite density or hookworm fecal egg counts and age group. Chi-square tests for trends of association: malaria parasite density in age <30 months, P < 0.00001, age  $\ge 30$ months, P>0.20. Hookworm fecal egg counts in age <30 months, P = 0.002, age ≥30, P = 0.005

Adapted from: Stoltzfus et al, J Nutr 2000

#### Hookworm and Malaria in the Etiology of Iron Deficiency and Anemia


% severe anemia (Hb <80 g/L)



Proportion of Zanzibari children with severe anemia (hemoglobin <80 g/L) by malaria parasite density or hookworm fecal egg counts and age group. Chi-square tests for trends of association: malaria parasite density in age <30 months, P<0.00001, age  $\geq$  30 months, P>0.20. Hookworm fecal egg counts in age <30 months, P = 0.002, age  $\geq$ 30, P = 0.005.

#### Adapted from: Stoltzfus et al, J Nutr 2000

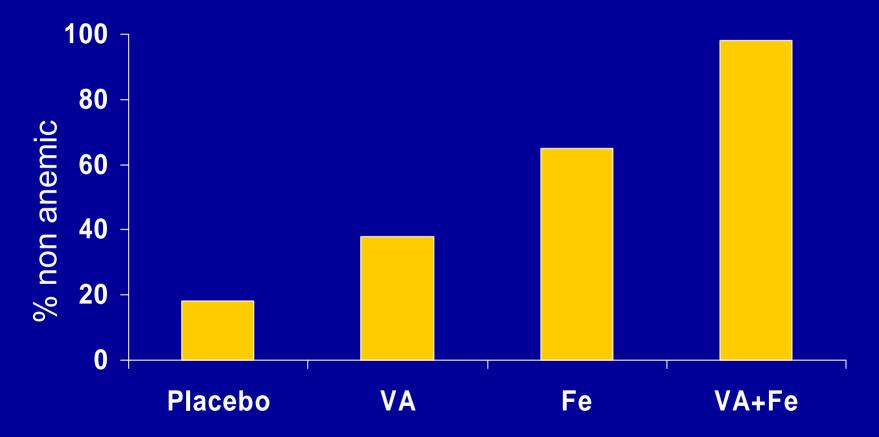
# Etiologies of anemia in pregnant rural Nepali women



Dreyfuss et al, J Nutr 2000

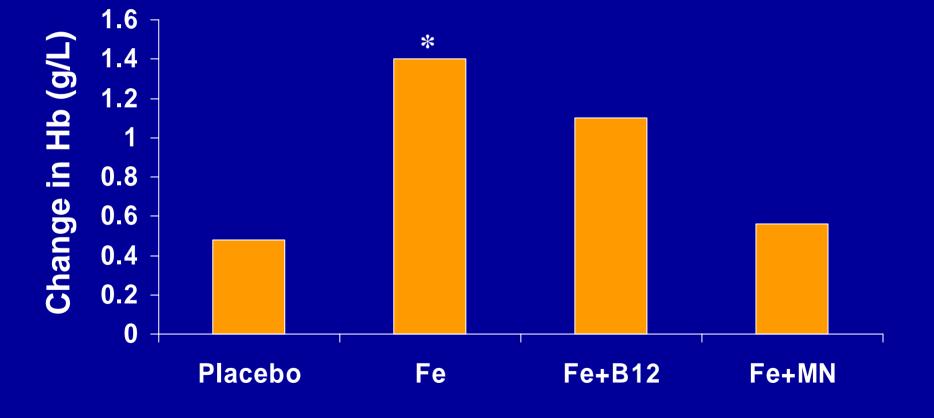
## Deficiency of vitamins may cause anemia

- RBC production (erythropoeisis)
- Protect mature RBC free radical oxidation
- Fe mobilization
- Fe absorption


VA, FA, B12, B6,
 riboflavin

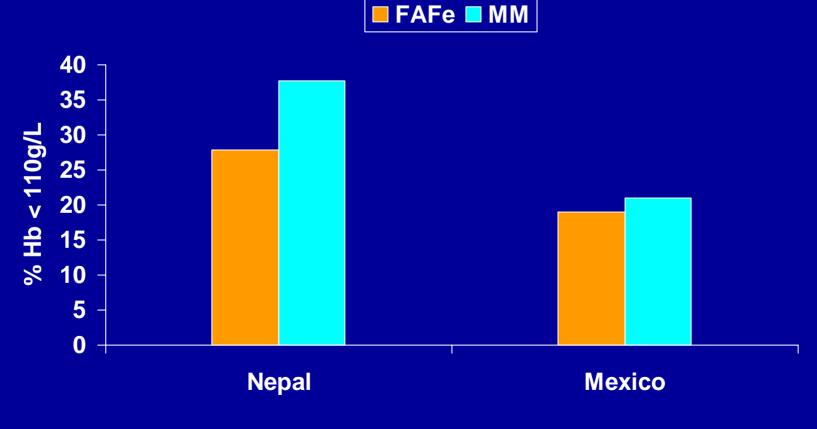
– VC, VE

- VA, VC, riboflavin


Fishman, Christian and West et al, PHN 2000

## Vitamin A and iron interaction in Indonesian pregnant women




Suharno et al, AJCN 1993

Iron and micronutrients supplementation in anemic Mexican children - RCT (Lopez et al, J Nutr 2001)



B2, B12, A, B6, E, folic acid, zinc, copper

Impact of antenatal multiple micronutrient supplementation on anemia in the third trimester



Christian et al, J Nutr 2003; Ramakrishnan et al, J Nutr 2004

## Consequences of Iron Deficiency and Anemia

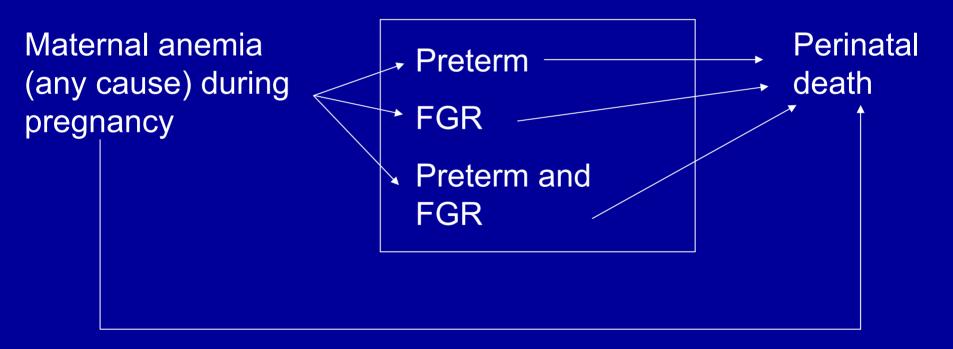
- Decreased work capacity
- Prematurity and LBW
- Perinatal mortality
- Maternal mortality
- Child mortality
- Impaired neurocognitive function in children

## Iron and work capacity



# Iron deficiency and anemia and work capacity

- Laboratory studies
- IDA causally associated with 10-50% reduction in VO<sub>2</sub> max
- No clear association between IDA and endurance capacity
- ID may impair energetic efficiency

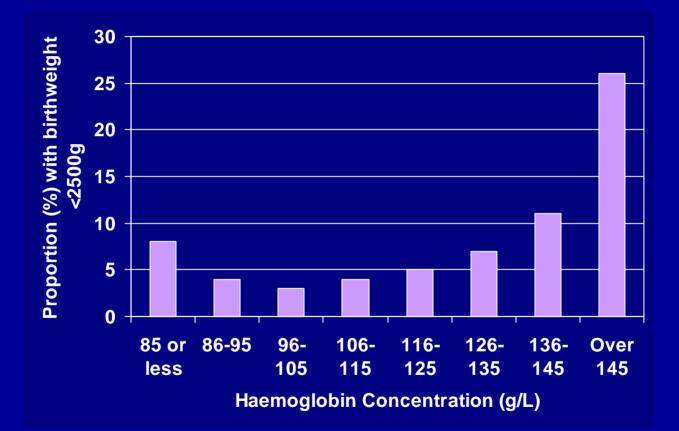

- Field studies
- Provide further causal evidence
- ID and IDA may affect
  productivity
- Institutional and technological factors may constrain ability or motivation of subjects

## What does this mean?

- Productivity losses due to iron deficiency
- Losses to GNP estimated from 6 countries range from 0.85% to 1.27%
- South Asia, where ID is high, loses \$ 5 billion annually

## **Consequences of Pregnancy Anemia**

#### Low birthweight

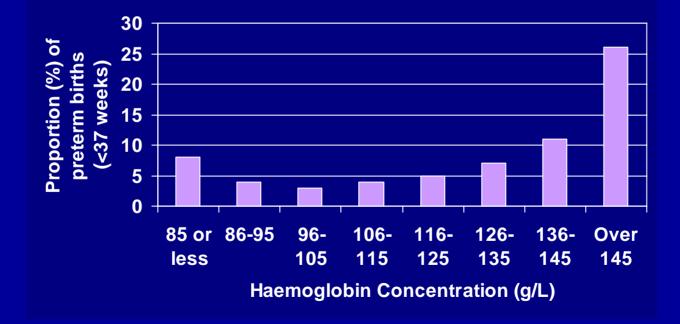



Adapted from Rasmussen, J Nutr 2001

## Fetal/Placental development

- Maternal hematocrit determines O<sub>2</sub> tension in amniotic fluid (Nigeria)
- Maternal anemia/iron status influences placental size, morphology
- ID may be associated with increases in maternal ACTH and cortisol

## **Child Development**

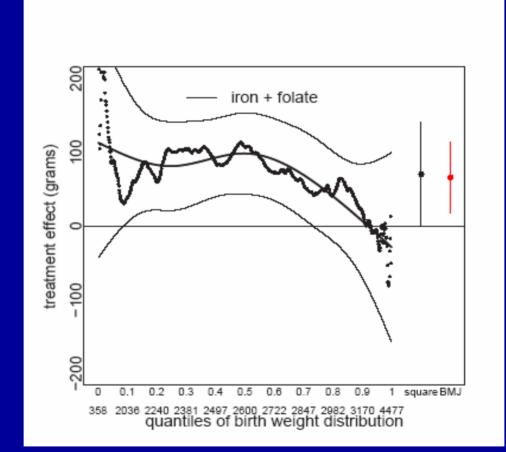



Incidence of low birth weight (<2500 g) by haemoglobin concentration (g/L). \*Data for white women only.\*

Adapted from: Steer et al; BMJ 1995

## **Child Development**

Incidence of preterm labor (<37 full wekks) by haemoglobin concentration (g/L) \*Data for white women only.\*




Adapted from: Steer et al; BMJ 1995

## Antenatal iron and low birth weight

- All systematic reviews of RCTs have found evidence to be inconclusive (Rasmussen 2000)
  - Mainly because of poorly conducted studies, inadequate design, low sample size, biases
- Recent trials in Nepal and the US found that antenatal iron supplementation increased birth weight

# Effect of antenatal iron supplementation on birth weight in rural Nepal



Iron folate improved birth weight by about 80g for weights below 2800 g
 Christian et al; unpublished

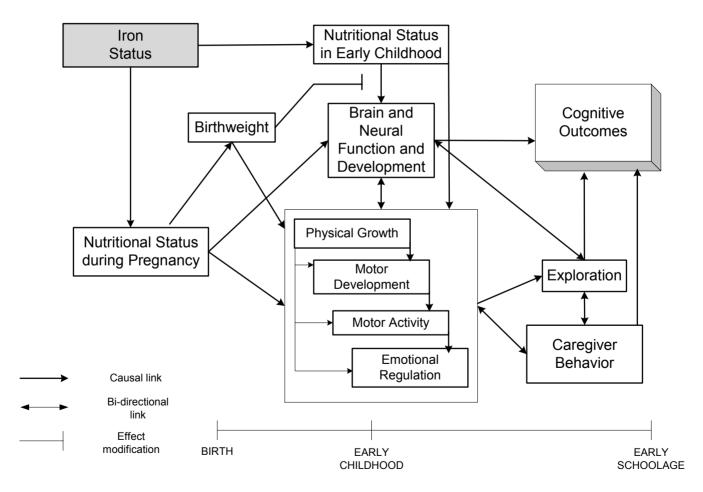
# Anemia and maternal mortality

- No clinical trials, but strong clinical impression
- "At 6.0g/dL evidence of circulatory" decompensation becomes apparent. Women experience breathlessness and increased cardiac output at rest. At this stage, added stress of labor can result in maternal death. Without effective treatment, maternal death from anemic heart failure is likely with Hb concentration of 4.0g/dL. Even a blood loss of 100 ml can cause circulatory shock and death." (INACG Statement)

# **Child Mortality**

- Relationship through infectious disease incidence is unlikely
- Relationship through anemia is possible, and probably severe anemia of any cause

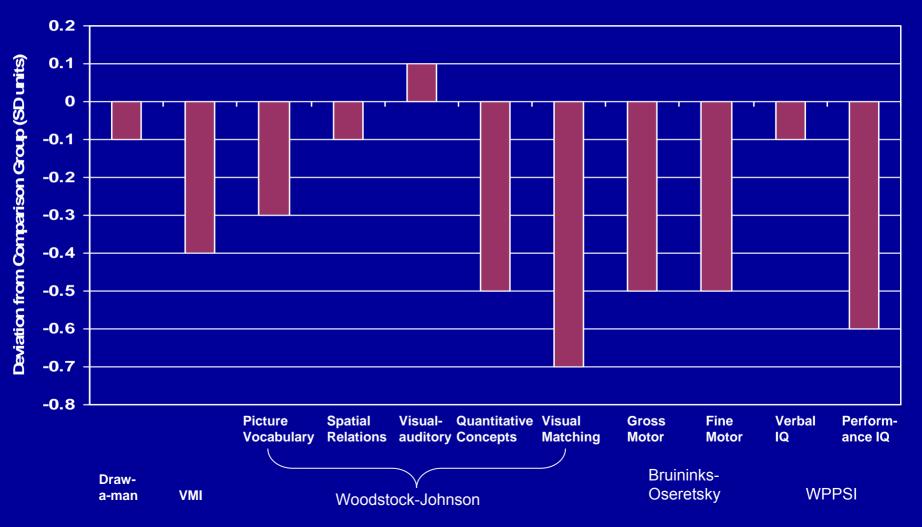
# **Nepal Trial**


- RCT, 2x2 factorial design
- Placebo, Fe+FA, Zn, Fe+FA+Zn
- Children ages 2-35 mo
- Outcome: Infant/Child survival
- Iron arms of the trial stopped because of a lack of any impact on infant/child survival

Tielsch et al; unpublished

# **Child Development**

- Iron may affect brain development through decreased brain iron which affects
  - Myelination
  - Neural transmission systems (both neuronal metabolism and dopaminergic functioning)
- Functions affected
  - Delays in maturation of visual, auditory, motor functions and other aspects of neurofunctional development (e.g. recognition memory)
  - Child-caregiver interaction
  - Child "functional isolation" through lack of exploratory movement


# Iron status and neurocognitive development



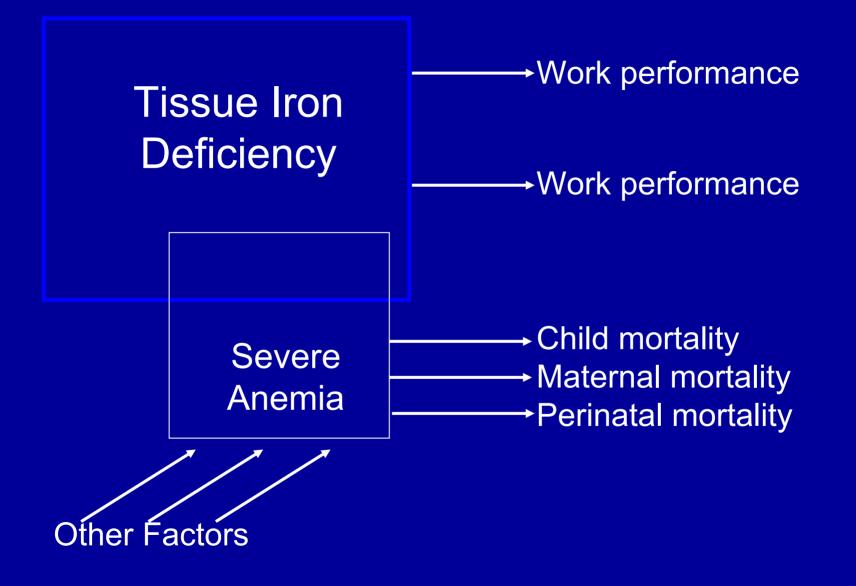
#### Modified from Pollit E; EJCN 2000

# **Child Development**

#### Long-term Outcome of Infants with Iron Deficiency



Adapted from Lozoff et al; NEJM 1991


# Language scores in four treatment groups with differences in scores showing effects of treatment

| Final language<br>score* | Difference in score <sup>†</sup>                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------|
| 13.1 (12.7 to 13.9)      |                                                                                                    |
| 13.5 (12.6 to 14.4)      |                                                                                                    |
| 14.0 (13.2 to 14.8)      |                                                                                                    |
| 14.2 (13.4 to 15.0)      |                                                                                                    |
|                          | 0.8 (0.2 to 1.4)                                                                                   |
|                          | 0.3 (-0.3 to 0.9)                                                                                  |
|                          |                                                                                                    |
|                          | score*<br>13.1 (12.7 to 13.9)<br>13.5 (12.6 to 14.4)<br>14.0 (13.2 to 14.8)<br>14.2 (13.4 to 15.0) |

Stoltzfus et al; BMJ 2001

# **Child Development - Summary**

- Evidence favors a true relationship, but not conclusive; data from RCTs are not consistent
- Issues of timing, reversibility and optimal intervention remain unresolved
- Predictive and construct validity of Bayley's scales is questionable



Adapted from: Stoltzfus RJ; J Nutr 2001

### Iron Supplementation and Infectious Disease

- 3 Systematic reviews:
  - Shankar et al (iron supplementation and malaria)
  - Oppenheimer (all interventions, all ages, all outcomes)
  - Gera and Sachdev (iron supplementation and incidence of infections in children)

## INACG Consensus Statement-1999 (based on Shankar et al.)

 "Known benefits of iron supplementation are likely to outweigh the risk of adverse effects caused by malaria...Oral iron supplementation should continue to be recommended in malarious areas where IDA is prevalent". Belmont meeting\* conclusion (based on Oppenheimer)

 Evidence not convincing for or against a relationship of public health significance

#### \* WHO/INACG convened meeting

Oppenheimer SJ; J Nutr 2001

# Iron supplementation in young children in Pemba, Zanzibar

- 2x2 factorial study of iron-folic acid and zinc in malaria endemic Pemba island
- The iron arms of the trial were discontinued due to evidence of increased hospitalization and mortality
- In a subsample, where children received treatment for malaria and other infections, iron reduced mortality in iron deficient children

Sazawal, Black, Unpublished

# Infectious disease and iron supplementation - summary

- IF an adverse relationship exists, it probably derives from risks of iron intervention, not protective effect of iron
- THUS, question is NOT : Is it better for children to be iron deficient
- BUT RATHER: How can we safely correct iron deficiency?
- Pemba study suggests screening and treatment of malaria and other infections may be required

# Prevention and treatment guidelines for iron supplementation (WHO/UNICEF/INACG)

- Pregnant women:
  - <u>Prevention:</u> 60 mg iron + 400  $\mu$ g folic acid daily for 6 mo in pregnancy
  - $\frac{\text{Treatment of severe anemia}}{\mu g \text{ folic acid daily for 3 mo}}: 120 \text{ mg iron} + 400$
- Children 6-24 mo:
  - <u>Prevention:</u> 12.5 mg iron + 50  $\mu$ g folic acid daily from 6-12 mo of age or from 2-24 mo of age if lbw
  - Treatment of severe anemia: 25 mg iron + 100-400  $\mu$ g of folic acid daily for 3 mo
- Children 2-5 yr : 20-30 mg iron
- Where hookworm is endemic, give anthelminthics

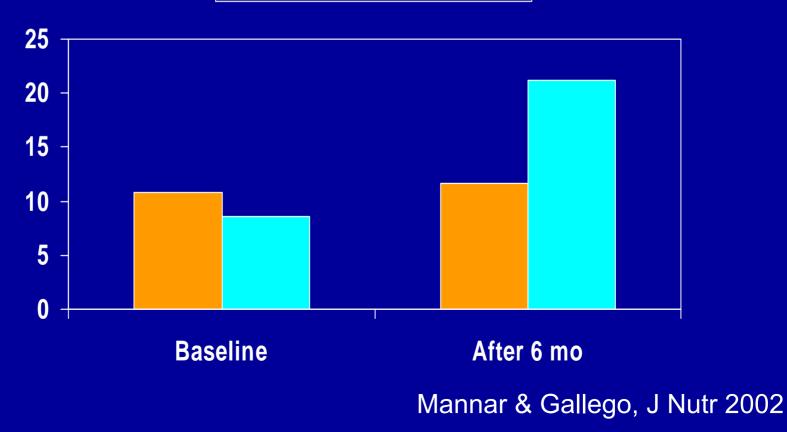
### **Prevention Strategies**

- Supplementation of target populations little success in pregnancy
- Dietary diversification/modification can it work?
- Fortification –Potential vehicles: cereals, flour, condiments, infant formula. Issues regarding the appropriate vehicle, type of fortificant, organoleptic properties, bioavailability, efficacy and effectiveness

#### Table 8.1 Different Options for Aims of Iron Supplementation Activities in Terms of Hemoglobin Concentration (Hb)

| Aim                                                        | Whom to<br>Supplement                | Programmatic<br>Implications               | How to<br>Evaluate<br>Aim  | Advantages                                   | Disadvantages                                                      |
|------------------------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------|----------------------------------------------|--------------------------------------------------------------------|
| Reach<br>full Hb<br>potential<br>(prevent<br>and<br>treat) | All                                  | Routine<br>supplementation<br>of all women |                            | All who may<br>benefit receive<br>supplement | Low<br>effectiveness                                               |
| Prevent<br>low Hb<br>level                                 | Those at risk<br>for low Hb<br>level | Routine or screening                       | % above<br>low Hb<br>level | Moderate<br>effectiveness                    | Uncertainty of<br>cut-off levels,<br>difficulties in<br>screening? |
| Treat low<br>Hb level                                      | Those below<br>low Hb level          | Screening low<br>level                     | % above<br>low Hb<br>level | High<br>effectiveness                        | Uncertainty of<br>cut-off levels,<br>difficulties in<br>screening? |

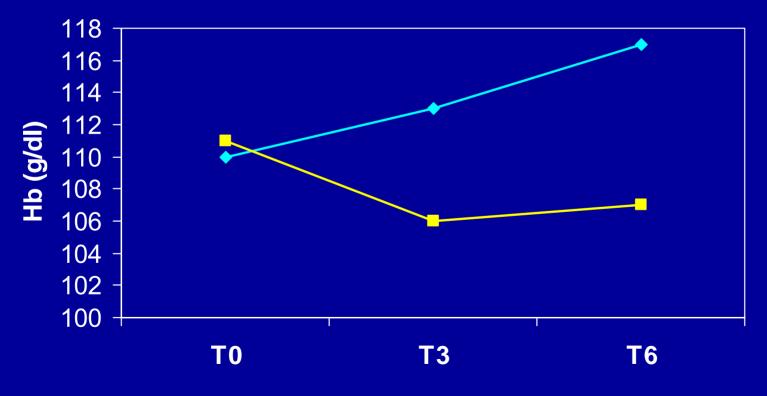
Adapted from: Ekstrom EC; In: Nutritional anemias (ed Ramakrishnan U). CRC Press 2001


### **Difficulties in Iron Supplementation**

|                                | Thailand | India | Indonesia | Myanmar | Caribbean |
|--------------------------------|----------|-------|-----------|---------|-----------|
| Service<br>Utilization         | ***      | ****  | **        | ***     | *         |
| Tablet supply                  | ***      | ***   | **        | **      | **        |
| Within-<br>facility<br>factors | **       | **    | *         | *       | *         |
| Individual compliance          | *        | *     | *         | *       | *         |

# **Effectiveness of iron-fortification**

Iron coated-rice among Philippino children

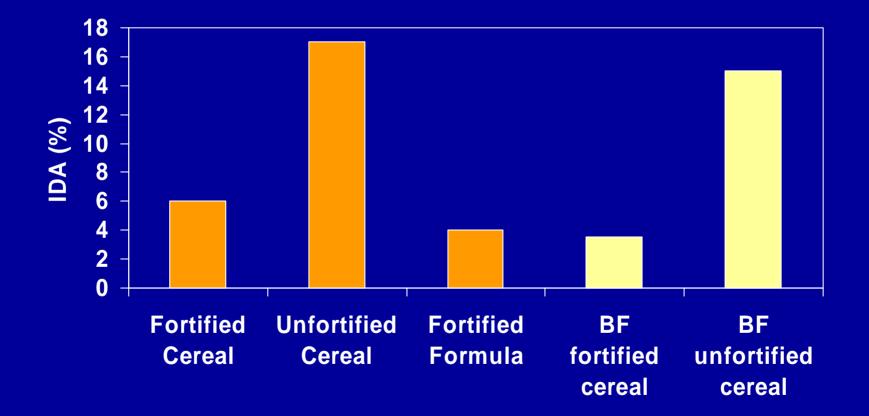

Hb (g/dl) Ferritin (mg/L)



## **Effectiveness of iron-fortification**

Iron-fortified fish sauce in Vietnam

Iron fish sauce — Control




Mannar & Gallego, J Nutr 2002

# **Special case - Infants**

- Infants are born with high iron stores
- Human milk has low iron content but bioavailability is high
- First 2-3 mo of life: exclusively BF infant is in positive iron balance
- During 3-6 mo of life infants are in negative balance
- Foods with bioavailable iron, fortified foods or a low-dose iron supplement should be provided at 6 mo (IOM recommendation)

# Prevalence of IDA among 8-mo old infants



Walter et al, Pediatrics 1993

# Home-fortification or Sprinkles

- "Sprinkles" are single-dose sachets containing micronutrients in a powdered form, which are easily sprinkled onto any foods prepared in the household
- Great for adding to complementary foods for young children
- Any homemade food can be fortified with the single-dose sachets, hence the term "home fortification".
- Sprinkles Nutritional Anemia Formulation has been tested in infants

# Effective control of anemia through combination of strategies

- Increased iron intake
  - Iron supplementation
  - Fortification of foods with iron (especially weaning foods)
- Control of parasitic infections (diagnosis and treatment, chemoprophylaxis, preventing transmission)
- Increased intake of other vitamins such as vitamin A, folic acid through

- Supplementation, Fortification, Nutrition Education

# Summary

- Causes of iron deficiency and anemia are multifactorial
- The strength of causal evidence that ID or anemia affects functional outcomes is variable
- Control of iron deficiency and anemia may require multiple strategies and is context specific

Copyright 2005, Parul Christian and The Johns Hopkins University. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.