
54 © Postgraduate Medicine,  Volume 126, Issue 2, March 2014, ISSN – 0032-5481, e-ISSN – 1941-9260
ResearchSHARE®: www.research-share.com • Permissions: permissions@postgradmed.com • Reprints: reprints@postgradmed.com

Warning: No duplication rights exist for this journal. Only JTE Multimedia, LLC holds rights to this publication. Please contact the publisher directly with any queries.

C L I N I C A L  F O C U S :  C L I N I C A L  P R O T O C O L S  A N D  C A R D I O VA S C U L A R  D I S E A S E , 
E M E R G E N C Y  S U R G E RY,  A N D  E M E R G E N C Y  M E D I C I N E

The Molecular Biology and Pathophysiology  
of Vascular Calcification

Mark F. McCarty, BA1 
James J. DiNicolantonio, 
PharmD2

1Catalytic Longevity, Carlsbad, CA;  
2Mid America Heart Institute, 
St. Luke’s Hospital, Kansas City, MO; 
Wegman’s Pharmacy, Ithaca, NY

Correspondence: Mark F. McCarty, BA, 
Catalytic Longevity, 
7831 Rush Rose Drive, Apt 316, 
Carlsbad, CA 92009. 
Tel: 760-216-7272 
Fax: 760-704-6379 
E-mail: markfmccarty@gmail.com

DOI: 10.3810/pgm.2014.03.2740

Abstract: Vascular calcification (VC), commonly encountered in renal failure, diabetes, and 
aging, is associated with a large increase in the risk for cardiovascular events and mortality. 
Calcification of the arterial media and of heart valves clearly plays a mediating role in this 
regard, whereas it is less clear how calcification of plaque influences atherogenesis and risk 
for plaque rupture. Vascular calcification is an active process in which vascular smooth muscle 
cells (VSMCs) adopt an osteoblastic phenotype and deposit hydroxyapatite crystals; apoptosis 
of VSMCs also promotes this deposition. Drivers of this phenotypic transition, which include 
elevated serum phosphate, advanced glycation end-products, bone morphogenetic proteins, 
inflammatory cytokines, and leptin, invariably induce oxidative stress in VSMCs, which appears 
to be a necessary and sufficient condition for induction of the runt-related transcription factor 
2 gene (RUNX2) and the shift to osteoblastic behavior. Magnesium antagonizes the impact 
of phosphate on VSMC osteoblastic transition, both by a direct effect within VSMCs and by 
suppressing absorption of dietary phosphate. Antioxidants that suppress reduced nicotinamide 
adenine dinucleotide phosphate oxidase activity may have the potential to block the osteoblastic 
transition of VSMCs. Minimizing the absorption of dietary phosphate may also be helpful in 
this regard, particularly in renal failure, and it can be achieved with plant-based dietary choices, 
avoidance of phosphate additives, and administration of pharmaceutical phosphate binders, 
supplemental magnesium, and niacin. Good vitamin K status opposes VC by optimizing the 
γ-carboxylation of matrix Gla protein, a physiological antagonist of VC. Adequate but not 
excessive vitamin D status also appears to discourage VC. Etidronate, a structural analogue of 
pyrophosphate, has shown potential for blocking VC.
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An Osteoblastic Phenotypic Shift
The phenomenon of vascular calcification (VC), which includes calcification of inti-
mal atheromatous plaque, medial calcification (arteriosclerosis), and calcification of 
the aortic valve or mitral annulus, is a frequent consequence of chronic renal failure, 
diabetes, and aging, and has been linked epidemiologically with an increased risk for 
cardiovascular events and mortality, independent of traditional risk factors.1–3 A meta-
analysis found that individuals with calcification in any vascular wall, compared with 
those who have no calcification, were at a 3- to 4-fold greater risk for cardiovascular 
events and cardiovascular and all-cause mortality.3 Although VC can be serving as 
a marker for vascular inflammation and for the pathologies that provoke it, VC may 
also be pathogenic in its own right. The arterial stiffening associated with medial 
calcification promotes systolic hypertension, increased pulse pressure, and ventricu-
lar hypertrophy.4 Aortic stenosis reflecting calcification of the aortic valve is one of 
the most common cardiovascular disorders, placing a major load on the heart and 
often requiring surgical correction.5 Mitral annular calcification has been linked to 
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an increased risk for atrial fibrillation and stroke, as well as 
increased cardiovascular mortality; the extent to which these 
associations are causal requires further clarification.6–9 The 
calcification of arterial plaque is associated with an increased 
risk for plaque rupture and myocardial infarction; whether 
the calcification per se promotes this outcome, or is rather 
just a marker for the inflammatory status of plaque, remains 
unclear. Plaques with a spotty pattern of calcification appear 
to be less stable than those with extensive calcification.10 It 
has been proposed that calcium phosphate crystals might 
destabilize plaque by promoting apoptosis in vascular smooth 
muscle cells (VSMCs) and inflammatory cytokine release 
by macrophages.11

Although an increased calcium-phosphate product does 
tend to promote VC, it is now clear that this process is an active 
one in which vascular smooth muscle or other mesenchymal 
elements (such as pericytes)12 of the vasculature undergo a 
phenotypic shift, such that their pattern of gene expression 
and behavior resembles that of osteoblasts.13 Induced expres-
sion of the runt-related transcription factor 2 (RUNX2; also 
called cbf-α-1) plays a key role in this regard, as this tran-
scription factor boosts expression (directly or indirectly) of a 
number of other proteins found in osteoblasts—including the 
transcription factors osterix and msh homeobox-2, bone mor-
phogenetic protein-2 and -4 (BMP-2 and BMP-4), alkaline 
phosphatase, osteopontin, osteocalcin, and matrix Gla protein 
(MGP)—that enable or regulate extracellular deposition of 
hydroxyapatite.14–19 Concurrently, certain proteins that func-
tion to inhibit extracellular calcification are downregulated.20 
Extracellular factors believed to play a physiological role in 
driving this phenotypic transition include: elevated serum 
phosphate, a major mediator of the VC commonly seen in 
chronic renal failure, but also linked to increased risk for 
VC in subjects with normal renal function21–27; BMP-2 and 
BMP-4, members of the transforming growth factor fam-
ily that contribute importantly to bone formation, but that 
also can be expressed in the vascular wall28,29; advanced 
glycation end-products (AGEs) that are typically elevated 
in patients with diabetes30–33; other endogenous receptors for 
AGE ligands such as S100 A1234–36; the uremic toxin indoxyl 
sulfate37,38; and certain proinflammatory cytokines commonly 
expressed in inflamed atheromatous arteries, such as tumor 
necrosis factor-α and interleukin-6.39–42 In addition to MGP, 
endogenous proteins that function to block VC include fetuin, 
osteopontin, and osteoprotegerin.43,44 Table 1 lists a number 
of agents that promote or inhibit the osteoblastic transition 
of VSMCs, or that work more directly to influence hydroxy-
apatite deposition.

A number of recent epidemiological studies link insulin 
resistance, abdominal obesity, and metabolic syndrome to 
an increased risk for vascular and valvular calcification.45–53 
 Possible mediators of this effect include adiponectin and 
leptin, which are decreased and increased, respectively, in 
metabolic syndrome.54 Low plasma adiponectin predicts 
progression of coronary calcification, independent of other 
established risk factors.55 Moreover, vascular calcification 
is observed in adiponectin knockout mice.56 Two studies 
have reported that adiponectin suppresses calcification in 
phosphate-treated VSMCs. One of these found that adipo-
nectin decreased RUNX2 expression and the osteoblastic 
transition,56 and the other pointed to an anti-apoptotic role 
of adiponectin in tumor necrosis factor TNF-α–stimulated 
VSMCs as the basis for its anticalcifying effect.57 These 
effects of adiponectin may be contingent on adenosine 
5’-monophosphate–activated protein kinase activation.57 
Conversely, there are reports that leptin levels correlate 
with coronary calcification independently of other pertinent 
risk factors.58,59 In atherosclerosis-prone apolipoprotein 
E–deficient mice, daily leptin injections did not accelerate 
atherosclerosis per se, but markedly potentiated vascular and 
valvular calcification.60 In addition, in vitro, leptin has been 
shown to promote an osteoblastic phenotype in VSMCs.61,62 
Hence, adiponectin and leptin appear to have a yin-yang rela-
tionship with respect to vascular calcification. The possibility 
that pharmaceutical adenosine 5’-monophosphate–activated 
protein kinase activators might mimic the protective impact 
of adiponectin is suggested by a controlled 1-year study in 
which metformin therapy slowed progression of coronary 
artery calcification in human immunodeficiency virus—
infected patients with metabolic syndrome.63

Oxidative Stress
Virtually every physiological agent known to provoke an 
osteoblastic phenotypic shift in VSMCs has been shown to 
induce oxidative stress in these cells; moreover, this  oxidative 

Table 1. Promoters and Inhibitors of VC

Promoters Inhibitors

Phosphate Magnesium
High calcium X phosphate Adiponectin
BMP-2/-4 Pyrophosphate
AGEs Matrix G1a Protein
SA10012 Fetuin-A
Indoxyl sulfate Osteopontin
Tumor necrosis factor-α/interleukin-6 Osteoprotegerin
Leptin

Abbreviations: AGE, advanced glycation end-product; BMP-2, bone morphogenetic 
protein-2; BMP-4, bone morphogenetic protein-4;  VC, vascular calcification.
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stress appears to drive the phenotypic transition, because 
measures that prevent or control this stress have been found 
to block this transition. Exposure of cultured VSMCs to 
adequate levels of hydrogen peroxide induces RUNX2 and 
promotes the osteoblastic transition, suggesting that induc-
tion of oxidative stress in smooth muscle is both a necessary 
and sufficient condition for this transition.17,64 Consistent 
with this view, markers of oxidative stress are found in the 
vicinity of calcifying foci in arterial walls and stenotic aor-
tic valves.65–67 Hydrogen peroxide, rather than other radical 
intermediates such as superoxide, peroxynitrite, or hydroxyl 
radical, appears to be the mediating factor in this regard; 
hence, modulation of the redox status of sulfhydryl groups 
seems likely to be responsible for the impact of oxidative 
stress on the phenotypic transition.66 Increased production 
(or diminished catabolism) of hydrogen peroxide promotes 
activation of nuclear factor κB, Akt phosphorylation, and 
induction of endoplasmic reticulum stress—factors that col-
laborate to promote the transcription and protein expression 
of RUNX2, while working in other ways to downregulate 
factors that oppose ectopic calcification.17,29 For example, 
nuclear factor κB suppresses the expression of ankylosis 
protein homologue, a transmembrane protein that enables 
extracellular export of pyrophosphate, an antagonist of 
hydroxyapatite deposition.20,68

The primary source of the oxidative stress that drives 
the osteoblastic transition varies according to the stimulus. 
Most such stimuli, including BMP-2, AGEs, SA100A12, 
indoxyl sulfate, inflammatory cytokines, and leptin, have 
been shown to activate reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase complexes in vascular 
smooth muscle.29,33–35,38,42,69,70 Adiponectin appears to have 
the opposite effect.71 These findings correlate nicely with a 
recent report that serum levels of free bilirubin—a compound 
now known to function intracellularly as a potent inhibitor 
of NADPH oxidase activity72–75—correlate inversely with 
the risk for vascular calcification.76 Moreover, induction of 
heme oxygenase-1, an enzyme that generates bilirubin (via 
biliverdin and biliverdin reductase) from heme, has been 
shown to block osteoblastic maturation in primary cultured 
osteoblasts.77 Conversely, the heme oxygenase-1 activity of 
calcifying arteries was found to be depressed in rats treated 
with toxic doses of vitamin D.78

Not surprisingly, there are reports that smokers are at 
greater risk for VC.79–81 Although there do not appear to be 
any studies that have examined the impact of smoke extract 
on osteoblastic transition in VSMCs, the αβ-unsaturated 
aldehydes and ketones that are prominent constituents of 

tobacco smoke have been shown to activate NADPH oxidase 
in a range of tissues by stimulating protein kinase C activ-
ity.82–87 Exposure of rats to cigarette smoke boosts oxidative 
stress in VSMCs and endothelial cells of their carotid arter-
ies; exposure of carotid arteries to cigarette smoke extract 
ex vivo has a similar effect.83 The carotid oxidative stress 
in rats exposed to cigarette smoke was inhibited ex vivo 
by diphenyleneiodonium, an inhibitor of NADPH oxidase. 
Nicotine did not influence arterial oxidative stress in this 
model. It appears likely that the adverse vascular effects of 
smoking, including VC, are largely mediated by NADPH 
oxidase activation.

Concentrations of phosphate comparable to those typi-
cally seen in renal failure patients (eg, 2.0–2.6 mM) drive 
the osteoblastic transition of VSMCs in vitro.21,22 Intracellular 
uptake of phosphate via the Pit-1 membrane transporter is 
necessary for this effect, so an increase in intracellular free 
phosphate presumably mediates it.21,88,89 There is recent 
evidence that exposure of VSMCs to elevated phosphate 
increases mitochondrial membrane potential while boosting 
mitochondrial superoxide generation, and that the respira-
tory chain inhibitor rotenone, but not inhibitors of NADPH 
oxidase, suppresses the subsequent osteoblastic transition.90 
This finding is at variance with those of a previous study, 
in which activation of NADPH was found to be at least 
partially responsible for the phenotypic transition evoked by 
elevated phosphate.91 The authors of the more recent study 
note that they employed primary cells from a bovine artery, 
whereas the previous study had used an immortalized smooth 
muscle cell-derived line (A7r5) that was likely to have higher 
expression of NADPH oxidase and lower mitochondrial 
activity. Conceivably, activation of NADPH oxidase in the 
earlier study might have been a downstream consequence of 
increased mitochondrial superoxide production.

An even more recent study confirms that elevated phos-
phate exposure promotes oxidant stress in mitochondria, 
but in this study mitochondrial membrane potential was 
decreased, and markers of apoptosis were upregulated.92 
Arguably, this may reflect a more intense induction of mito-
chondrial oxidative stress that damages the mitochondrial 
inner membrane, leading to a collapse of membrane potential 
and induction of apoptosis. Indeed, apoptosis of VSMCs is 
a typical feature of VC, and is suspected to expedite it by 
promoting nucleation of hydroxyapatite.13,93

The possibility that superoxide derived from uncoupled 
nitric oxide synthase (NOS) contributes to calcification of the 
aortic valve has been suggested by a study that demonstrated 
increased superoxide production in stenotic aortic valves 
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acquired during surgery or on autopsy.67 Whereas NADPH 
oxidase activity was not found to be increased in these valves, 
inhibitors of NOS suppressed this oxidative stress.

Magnesium
Extracellular magnesium in high physiological concentrations 
has been shown to block the ability of elevated phosphate 
to promote an osteoblastic transition in VSMCs; this effect 
is contingent on intracellular uptake of the magnesium.94,95 
These findings fit nicely with evidence that serum magne-
sium correlates negatively with the risk for VC and mortality 
in hemodialysis patients, and a clinical trial observed that 
 supplemental magnesium reduces carotid intima-media 
 thickness in such patients.96–99 Whether magnesium blocks the 
impact of elevated phosphate on oxidative stress in VSMCs 
has not yet been reported, but it can be credibly hypothesized 
that an increase in intracellular magnesium somehow blunts 
the pro-oxidative impact of elevated intracellular phosphate 
on mitochondrial function, possibly via a direct ionic inter-
action. If this hypothesis is correct, it is conceivable that the 
protective impact of magnesium on risk for VC is specific 
to ameliorating the adverse effects of elevated phosphate in 
this regard, and that VC stemming from other stimuli (such 
as increased AGEs in patients with diabetes) might not be 
influenced by magnesium. Further cell culture studies should 
clarify these issues.

Antioxidant Strategies
The accumulating evidence that hydrogen peroxide is the 
key driver of osteoblastic transition in VSMCs suggests that 
antioxidant measures capable of suppressing the production 
of hydrogen peroxide, hastening its catabolism, or antago-
nizing its oxidative impact on protein structure could be 
useful for controlling VC. In light of the ability of bilirubin 
to inhibit the activity of certain isoforms of NADPH oxidase 
(the isoform specificity of this effect still awaits clarifica-
tion), it is interesting to note that the Spirulina chromophore 
phycocyanobilin (PhyCB), a biliverdin derivative converted 
by biliverdin reductase activity to the bilirubin homologue 
phycocyanorubin within cells, has recently been shown to 
mimic the NADPH oxidase-inhibitor effect of bilirubin, both 
in vitro and in vivo.100,101 This phenomenon likely accounts 
for the versatile anti-inflammatory and antioxidant effects of 
oral phycocyanin (the Spirulina protein to which PhyCB is 
covalently attached) observed in a plethora of rodent stud-
ies.101–103 Because there is good reason to suspect that bilirubin 
may inhibit VC in humans, the impact of oral phycocyanin 
in rodent models of VC, and of biliverdin and PhyCB in cell 

culture models of this phenomenon, should be evaluated. 
It should be noted, however, that PhyCB (or bilirubin) would 
not be expected to impact the mitochondrial oxidative stress 
induced directly by increased intracellular phosphate. And 
whether humans absorb and metabolize PhyCB in a manner 
comparable to rodents remains to be established.

Intracellular glutathione functions to reverse the oxida-
tions of sulfhydryl groups induced by hydrogen peroxide, and 
supplementation with the nutraceutical N-acetylcysteine can 
boost intracellular glutathione by increasing the availability 
of its rate-limiting precursor cysteine.104,105 This may explain 
the favorable impact of N-acetylcysteine (600 mg twice daily) 
in a 2-year placebo-controlled trial in hemodialysis patients; 
the treated patients were 40% less likely to experience a 
cardiac event during the study (relative risk, 0.60; 95% CI, 
0.38–0.95; P = 0.03).106 This study was published over a 
decade ago, and no attempts to confirm it have appeared yet.

Phase 2 inducers can also boost intracellular glutathione 
levels (via induction of γ-glutamylcysteine synthase), as 
well as the activities of various antioxidant enzymes. Lipoic 
acid has phase 2 inducing potential, and is also suspected 
of functioning more directly as an antioxidant within mito-
chondria.107–111 Lipoic acid has been reported to suppress 
the osteoblastic transition of VSMCs exposed to elevated 
phosphate, and when administered orally suppressed VC in 
mice treated with toxic doses of vitamin D.92 Conceivably, 
other phase 2 inducing compounds such as sulforaphane or 
green tea catechins could provide analogous protection.112

Selenium is an essential cofactor for various forms of the 
enzyme glutathione peroxidase, some of which catabolize 
hydrogen peroxide. Nutritional selenium availability can 
be rate-limiting for the expression of selenium-dependent 
enzymes in regions where soil selenium availability is low, 
and selenium availability is also suboptimal in many cell 
culture media.113,114 This likely explains why preincubation 
with selenite was found to suppress the osteoblastic transi-
tion in VSMCs exposed to hydrogen peroxide in vitro.64 An 
improvement in selenium status might be helpful for the 
control of VC in regions where nutritional selenium intakes 
tend to be low.

Whether certain antioxidants might have some utility for 
antagonizing the upregulatory impact of increased intracel-
lular phosphate on mitochondrial superoxide generation 
remains to be seen. Mitochondrial oxidative stress can 
exert a feed-forward effect on mitochondrial superoxide 
production by damaging the respiratory chain of the mito-
chondrial inner membrane.115 Indeed, the potent membrane 
antioxidant astaxanthin has been found to be protective in 
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 ischemia-reperfusion models.116–118 Whether preincubation 
with astaxanthin could influence the impact of elevated phos-
phorus on osteoblastic transition and apoptosis in VSMCs 
has yet to be determined.

To the extent that uncoupled NOS might contribute to 
the oxidative stress that drives valvular stenosis, it should be 
noted that high-dose folate has been shown to promote recou-
pling of this enzyme, presumably by preventing or reversing 
the oxidation of the NOS cofactor tetrahydrobiopterin by per-
oxynitrite-derived oxidants.119–124 This effect is mediated by 
high intracellular levels of reduced folate metabolites, which 
have high and versatile oxidant scavenging activity.120 This 
is entirely unrelated to modulation of homocysteine metabo-
lism, and requires higher doses of folic acid than those that 
optimally suppress homocysteine.125 Several decades ago, 
Kurt Oster pioneered the use of high-dose folate (40–80 mg 
daily) in cardiovascular medicine; his enthusiastic reports 
were ignored, as they were only anecdotal.126

These considerations suggest that certain antioxidants 
might have the potential to control VC. Nonetheless, these 
possibilities are currently undocumented and hypothetical 
from a clinical standpoint and should not be used as a guide 
to current therapy. At present, evaluation of certain antioxi-
dants in cell culture studies and rodent models of VC would 
be warranted; clinical trials could then be attempted if these 
efforts yielded encouraging results. Skepticism regarding the 
clinical utility of antioxidants is understandable given the 
null or negative outcomes observed in some major clinical 
trials involving agents such as α-tocopherol, vitamin C, and 
β-carotene.127 However, it should be noted that these com-
pounds would be expected to do little or nothing to block the 
production or cell signaling impact of hydrogen peroxide, 
which is why they were not mentioned in the foregoing 
discussion.

Minimizing Phosphate Absorption
A range of additional measures may be helpful in the pre-
vention of VC. Magnesium supplementation has been cited 
above; this might work not only via a direct effect of elevated 
magnesium on VSMCs, but also by promoting precipitation 
of dietary phosphate in the gastrointestinal tract, opposing its 
absorption.128,129 Moreover, a number of practical measures 
have the potential to moderate serum phosphate levels by 
minimizing the amount of phosphate absorbed from the diet: 
choosing a plant-based diet, in which a high proportion of the 
phosphate is tied up in poorly absorbable phytates; avoid-
ing soft drinks and processed foods that contain  phosphate 
 additives; employing phosphate-binding drugs such as 

sevelamer or lanthanum carbonate, as is commonly done in 
treatment of chronic renal disease; magnesium supplemen-
tation; and treatment with sustained-release niacin, which 
appears to decrease gastrointestinal expression of a prominent 
phosphate transport protein.128–140

Vitamin K and Vitamin D
Vitamin K can favorably influence VC, as posttranslational 
γ-carboxylation of MGP, catalyzed by a vitamin K– dependent 
enzyme, is crucial to MGP’s ability to antagonize VC.141,142 

This presumably explains why use of the  vitamin K– antagonist 
drug warfarin is associated with increased risk for VC.143 
How properly carboxylated MGP functions in this regard 
is still unclear; it can bind to and antagonize the activity 
of the BMP proteins, which may play a prominent role in 
VC, but additional mechanisms are being explored.144–146 
Serum levels of dephospho-undercarboxylated MGP have 
been found to correlate directly with VC, and these levels 
can be decreased dose-dependently by effective vitamin K 
supplementation.147–150 The menaquinone form of vitamin 
K (vitamin K2) produced by certain bacteria appears to be 
more effective for promoting carboxylation of MGP than 
the phylloquinone form found in green leafy vegetables and 
algae, presumably because the former is more effectively 
transported to peripheral tissues (as opposed to the liver).151 In 
epidemiological studies, increased intakes of menaquinone, 
but not phylloquinone, have been linked to a lower risk for 
coronary calcification and coronary heart disease.152–154 But 
significant amounts of vitamin K2 are found only in certain 
fermented soy products (notably nattō) and certain cheeses. 
Hence, aside from aficionados of nattō (which is popular 
in eastern Japan),155 the vitamin K activity of most people 
 eating natural diets is suboptimal from the standpoint of MGP 
γ-carboxylation and, presumably, from the standpoint of VC. 
Supplemental intakes $ 200 µg menaquinone-7 daily appear 
to achieve near maximal γ-carboxylation of MGP and other 
vitamin K–dependent proteins.151 Although the highly favor-
able impact of vitamin K2 supplementation on bone strength 
and fracture risk has been documented (reflecting vitamin K’s 
role in γ-carboxylation of osteocalcin),156 its impact on risk 
for VC should be addressed in future studies. Importantly, 
vitamin K status tends to be poor in hemodialysis patients, 
who of course are at high risk for VC.157,158

Poor vitamin D status (low serum 25-hydroxyvitamin D) 
has been associated clinically with increased VC, whether or 
not renal function is impaired, and such calcification is seen in 
mice fed a vitamin D–deficient diet.159–163 On the other hand, 
toxic intakes of vitamin D promote VC by  increasing serum 
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levels of unbound calcitriol, which functions to boost absorp-
tion of both calcium and phosphate.164,165 Why moderate 
vitamin D activity is protective with respect to VC remains 
unexplained. Although the cardiovascular protection afforded 
by good vitamin D status is likely mediated in large part by 
downregulation of parathyroid hormone (PTH) levels,166,167 
PTH has not been found to promote osteoblastic transition 
in smooth muscle cell cultures; indeed, stimulation of the 
membrane PTH receptor on VSMCs has been reported to 
suppress this transition.168,169 On the other hand, continuous 
intravenous infusion of PTH was found to promote VC and 
RUNX2 expression in parathyroidectomized, 5/6 nephrec-
tomized rats, so it is conceivable that PTH promotes VC 
through some indirect mechanism.170 Another possibility is 
that vitamin D directly influences vascular smooth muscle 
function, as the 1-α-hydroxylase activity required for con-
version of 25-hydroxyvitamin D to the active hormone cal-
citriol has been reported to be present in cultured VSMCs.171 
Although a recent report indicates that calcitriol and other 
vitamin D receptor agonists can inhibit the osteoblastic 
transition in VSMCs in vitro,172 previous reports indicated 
either no effect or an adverse effect in this regard.173–175 It is 
not yet clear whether autocrine production of calcitriol in 
vascular smooth muscle is high enough to be of physiologi-
cal significance in vivo. Vitamin D supplementation, in daily 
doses within the range of 2000 to 10 000 International Units, 
appears to be an appropriate and safe strategy for ensuring 
replete vitamin D status.176

In renal failure patients, the capacity to convert 
25-hydroxyvitamin D to calcitriol is typically impaired 
(though usually not absent),177,178 so treatment with vitamin 
D agonist drugs, not requiring 1-α-hydroxylase activation 
for activity, is commonly employed. These agents are a 
mixed blessing, as they have the potential to promote VC by 
expedited absorption of both calcium and phosphate; hence, 
relatively low doses of these agents may provide the greatest 
net benefit for vascular health. Paricalcitol, which appears 
less likely than certain other vitamin D agonist drugs to pro-
mote excessive calcium/phosphate absorption, may have a 
more favorable effect than calcitriol on phosphate-stimulated 
osteoblastic transition in vitro.179,180

Etidronate
As noted, one strategy that VSMCs employ to prevent ectopic 
calcification is to generate pyrophosphate within the extracel-
lular matrix, either by ectonucleotide pyrophosphatase activ-
ity or by exporting pyrophosphate via the ankylosis protein 
homologue transporter.68 Pyrophosphate not only antagonizes 

hydroxyapatite deposition by a direct biophysical effect, but 
also acts on VSMCs to prevent an osteoblastic phenotypic 
shift.181 (Conversely, alkaline phosphatase degrades the 
extracellular pyrophosphate pool, thus accounting for its key 
role in bone formation and VC.) The bisphosphonate drug 
etidronate is a highly stable analogue of pyrophosphate that 
shares its ability to block hydroxyapatite deposition. Two 
small controlled clinical trials have evaluated the impact of 
intermittent etidronate on VC in hemodialysis patients with 
favorable results. A regimen of 200 mg/day for 14 days every 
3 months led to a reduction in coronary artery calcification 
that was significant relative to controls; bone density was not 
changed.182 (A similar regimen in patients with type 2 diabetes 
was reported to decrease carotid intima-media thickness).183 
Another controlled study evaluated 200 mg etidronate given 
every day of dialysis; the aortic calcification area failed 
to progress under this treatment, whereas it continued to 
increase in the control group; again, bone density was not 
influenced in the treated group.184 In a rat model of renal 
failure and VC, etidronate administration likewise inhibited 
aortic calcification without modifying bone density.185 These 
results suggest that intermittent etidronate merits more exten-
sive evaluation in groups at high risk for VC.

Conclusion: Practical Strategies  
for Avoiding VC
There is considerable evidence that induced oxidative 
stress—stemming from NADPH oxidase, mitochondria, 
and possibly uncoupled NOS—drives the osteoblastic 
phenotypic transition of VSMCs that mediates vascular 
and valvular calcification. Therefore, drugs and nutra-
ceuticals that either inhibit the production of hydrogen 
peroxide or oppose its impact on cellular signaling in 
VSMCs may have the potential to prevent VCs; they may 
include the bilirubin analogue  phycocyanobilin, as well 
as N-acetylcysteine, lipoic acid, high-dose folate, and 
selenium. Elevated phosphate levels trigger mitochondrial 
oxidative stress in VSMCs. Measures that decrease vascu-
lar exposure to phosphate have been shown to be useful 
for controlling VC, especially in those with compromised 
renal  function; a plant-based diet, avoidance of phosphate 
additives, pharmaceutical phosphate binders (sevelamer, 
lanthanum carbonate),  supplemental magnesium, and niacin 
may be useful in this regard.  Magnesium acts on VSMCs 
directly to counteract the impact of phosphate on osteoblas-
tic transition.  Optimizing vitamin K status, preferably via 
supplementation with menaquinone-7, helps to prevent VC 
by promoting sufficient γ-carboxylation of the calcification 
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antagonist MGP. Maintaining replete vitamin D status may 
also provide protection from VC, for reasons that are unclear, 
whereas vitamin D toxicity promotes VC by boosting cal-
cium and phosphate absorption inappropriately. Prevention 
or control of metabolic syndrome and diabetes with prudent 
lifestyle measures, as well as the avoidance of tobacco, also 
appears likely to diminish the risk for VC. Etidronate may 
have potential for inhibiting VC by mimicking the protec-
tive impact of pyrophosphate in this regard. These strategies 
are summarized in Table 2.
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Table 2. Strategies for Inhibiting VC

Reducing phosphate absorption—for moderating serum phosphate

  Plant-based diet
  Avoidance of phosphate additives
  Pharmaceutical phosphate binders or magnesium
  Niacin
Antioxidants—potentially useful for inhibiting osteoblastic transition of 
VSMCs
  Phycocyanobilin, N-acetylcysteine, lipoic acid
Magnesium—suppresses phosphate-driven osteoblastic transition of VSMCs
Vitamin K—promotes γ-carboxylation of MGP
Vitamin D—protective when adequate but not toxic; mechanism unclear
Etidronate—pharmaceutical pyrophosphate mimic
Correct/control metabolic syndrome and diabetes
Smoking cessation

Abbreviations: MGP, matrix Gla protein;  VC, vascular calcification;  VSMC, 
vascular smooth muscle cell.
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