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The pathogenesis of multiple sclerosis (MS) remains poorly under-
stood. Presumably, MS is caused by multiple environmental, epige-
netic, and genetic factors. Among them, human endogenous retro-
viruses (HERVs), Epstein-Barr virus (EBV) and vitamin D have been
suggested to play a role in the pathogenesis and course of MS. Be-
cause vitamin D can affect the immune system and infections, it can
be hypothesized thatthereis a close interplay between vitamins, EBV
and ERV in the pathogenesis of MS. Here, we summarize the impor-
tantdata on vitamin D, including polymorphisms in genes related to
vitamin D metabolism, EBV and ERV, in the pathogenesis of MS and
create hypotheses regarding their interactions. Data indicate that vi-
tamin D has a strong impact on viral infections and interferes with
EBV infection, while EBV is capable of activating silent ERVs. We be-
lieve that EBV could be the missing link between vitamin D and ERV
in MS pathogenesis.
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1. Introduction

Although MS is one of the most common neurological
diseases worldwide, its pathogenesis is still largely unknown.
Dysregulation of the immune system has been discussed [1],
as well as other endogenous and environmental factors, in-
cluding endogenous retroviruses (ERVs) [2], vitamin D lev-
els [3], herpesviruses [4] such as Epstein-Barr virus (EBV)
[5], the gut microbiota [6], short-chain fatty acids [7], smok-
ing [8] and body mass index [9].

Here, we provide a short overview regarding the putative
role of ERV, EBV and vitamin D and the interplay between
these factors in the pathogenesis of MS. We included data
from Mendelian randomization studies on vitamin D that in-
vestigated associations of genetic polymorphisms in genes re-
lated to vitamin D metabolism and susceptibility to MS. Fi-
nally, we aim to shed more light on the interconnected role
of ERV, EBV and vitamin D in the pathogenesis of MS.
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2. Multiple sclerosis and ERV

During evolution, the infection of germline cells with
retroviruses led to accidental stable integration of these
viruses into the genome of the infected host. These so-called
endogenous retroviruses (ERVs) are present in the genomes
of virtually all animals. Approximately 8% of human DNA
comprises ERV sequences. Complete ERVs are composed
of four major structural genes: gag (encoding matrix and
retroviral core), pol (reverse transcriptase and integrase), pro
(protease), and env (envelope). Indeed, most human ERVs
(HERVs) are not capable of replicating due to their high sus-
ceptibility to mutations [10]. However, some HERV ele-
ments contain intact open reading frames and can thus code
for proteins [11]. It is possible that approximately 7% of all
HERYV sequences are transcriptionally active [12]. HERVs
belong to so-called retroelements, which are mobile frag-
ments that use an RNA intermediate. HERVs have regu-
latory long terminal repeats (LTR). These LTRs can be in-
volved in the expression of ERV-derived sequences or can
support the expression of neighboring genes [13, 14]. For ex-
ample, HERV-W elements affect the transcription of at least
55 genes [15].

ERVs contribute to some important physiological func-
tions, e.g., placental development [16], and they occasion-
ally shelter the host from external viruses [17]. In addition,
HERVs seem to be related to certain diseases [18], e.g., dia-
betes mellitus type I [19], schizophrenia and bipolar disorder
[20], or cancer [21].

The first connection between HERV and MS was found in
1989, when the transcriptional activity of retroviruses in MS
patients was found [22]. The respective HERV has been re-
ferred to as multiple sclerosis-associated retrovirus (MSRV)
and is currently classified as HERV-W. In addition, sev-
eral other HERVs seem to be associated with MS, such as
HERVK-18 [23], HRES-1 [24] or HERVFc-1 [25, 26]. It
is striking that the number of expressed HERV sequences
is higher in MS patients than in healthy subjects [27], and
HERYV upregulation within MS plaques correlates with dis-
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ease activity [28]. In addition, MS patients show higher an-
tibody reactivity to certain HERV sequences [29]. HERV re-
activation can lead to demyelinating plaques by initiating mi-
croglial inflammation [30]. For example, MSRV induces the
release of the cytokines IL-6 and IL-8 [31].

Interestingly, women have higher levels of MSRV DNA
copies than men, both in MS patients and controls [32],
and the prevalence of MS is higher in women than in men
[33]. When patients suffering from MS undergo antiretro-
viral therapy, symptoms of the disease can temporarily disap-
pear [34-36], suggesting a strong association between HERV
and MS. Indeed, these effects have been reported only in sin-
gle cases and are, therefore, difficult to interpret in the con-
text of a complex disease such as MS. However, the LTR se-
quences of some HERV's show polymorphisms that are typi-
cal for MS patients, and these polymorphisms might explain
the epidemiology of MS in certain populations [37]. No-
tably, not all individuals have the same set of HERV copies
[38]. Such insertional polymorphisms might influence sus-
ceptibility to MS development. Moreover, we observed an
enrichment of HERV-like sequences near MS-related single-
nucleotide polymorphisms (SNPs) [39]. The presence or ab-
sence of specific HERV sequences might indicate genetic fac-
tors that predispose patients to MS. However, genetic deter-
minants alone cannot explain disease development. This is
evident by the low heritability of MS, as only a minority of
monozygotic twins are concordant for MS [40]. Therefore,
it can be assumed that environmental factors are necessary
for disease development. Vitamin D could be one of these
factors.

3. Multiple sclerosis and vitamin D

Vitamin D is a group of fat-soluble secosteroids and is
mainly synthesized by the skin after sunlight exposure [41].
Vitamin D deficiency is prevalent in many parts of the world
[42] and affects approximately one billion people worldwide
[43]. Although vitamin D is mainly associated with the regu-
lation of calcium balance, it also has immunomodulatory ef-
fects and appears to beneficially impact respiratory infections
[44, 45].

Low-vitamin D status is also associated with MS [46, 47].
Moreover, children born in autumn have a lower risk of de-
veloping MS than those born in spring [48, 49]. Since vi-
tamin D status is usually higher at the end of summer than
at the end of winter, we hypothesize a link between vitamin
D and MS risk in children. The higher global prevalence of
MS in countries distant from the equator [50] supports the
presumed role of vitamin D in the pathogenesis of MS. This
assumption is supported by the fact that people emigrating
from a country with a high MS risk to a country with a lower
MS risk are less affected by MS than their former countrymen
[51]. Females have been shown to have lower plasma con-
centrations of vitamin D than males [52], which could also
explain the elevated MS incidence in females.

The role of vitamin D in the immune system has been
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studied intensively. Vitamin D can promote a shift from T-
helper 1 cells to T-helper 2 cells [53]. In addition, vitamin
D increases the number of T regulatory cells [54] and in-
fluences the expression of the class II MHC molecule HLA-
DRB1*1501, which is associated with MS [55]. Therefore,
vitamin D can support anti-inflammatory mediators and re-
duce the levels of different cytokines, such as TNF-q, IL-15,
IL-6, IL-8, and IL-17 [56]. These functions of vitamin D in
the regulation of immune cells and cytokines support the hy-
pothesis that vitamin D deficiency may modulate the progres-
sion of MS [57]. In addition, adequate plasma concentrations
of vitamin D have been shown to be linked to a lower risk of
relapse [58], and SNPs associated with lower levels and func-
tion of vitamin D are associated with a higher risk of MS [59].

Polymorphisms in genes implicated in vitamin D
metabolism and signaling were also observed in MS patients.
The genes affected by these polymorphisms include the
vitamin D receptor [60], the vitamin D binding protein
DBP [61], the 25 hydroxyvitamin D hydroxylase CYP27B1
[61], and the mitochondrial 1,25-dihydroxyvitamin D3
hydroxylase CYP24A1 [62], which degrades bioactive D
vitamers. Interestingly, polymorphisms in genes that are
not causally linked to vitamin D pathways were related
to serum vitamin D levels [63], such as CD40 (which is
associated with immune regulation and homeostasis), the
interleukin 7 receptor gene (which is essential for survival
and proliferation of T cells) and the immune-regulatory
lymphocyte activation gene 3.

However, a narrative review summarizing the data from
meta-analyses and systematic reviews found no clear evi-
dence that vitamin D may prevent MS [45], and studies in-
cluding MS patients did not find consistent or convincing ef-
fects of vitamin D supplementation on the MS course [64].
As mentioned above, genetic factors are unlikely to explain
MS susceptibility. Today, it is not possible to exclude that
a combination of vitamin D deficiency and genetic factors
influencing vitamin D metabolism might be responsible for
MS. The similarity of vitamin D concentrations was shown
to be significantly greater in monozygotic twins than in dizy-
gotic twins [65]. However, in this study, vitamin D was not
an independent risk factor for MS. A major problem for the
interpretation of such data is the fact that it is unclear at
which time in life vitamin D deficiency might be required
for MS development. An interesting recent study investi-
gated differences in immune cell composition between MS-
affected monozygotic twins and their healthy cotwins [66].
This study demonstrated that immune cell composition in
twins is highly similar, independent of disease status. Inter-
estingly, the similarity was higher in pairs where the healthy
cotwin showed signs of subclinical neuroinflammation. A
possible interpretation of this observation is that the inter-
action of the immune system with exogenous or endogenous
antigens has taken place. In this regard, the influence of vita-
min D on infections with exogenous viruses seems interest-
ing.
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4. Vitamin D and viruses

Vitamin D seems to have a great impact on viral infec-
tions. In epidemiological studies, lower serum vitamin D
concentrations are associated with higher rates of infection
with respiratory syncytial virus [67], polyomavirus [68], hu-
man papillomavirus [69], cytomegalovirus [70], and herpes
simplex virus [71]. In addition, lower serum vitamin D con-
centrations are associated with EBV [72] and hepatitis C virus
[73]. Additionally, vitamin D deficiency can induce higher
hepatitis B virus levels [74] or a shorter survival time in pa-
tients with human immunodeficiency virus [75].

Vitamin D receptor polymorphisms are related to hepati-
tis B virus [76], hepatitis C virus [73], and the presence of
respiratory syncytial virus infections [77]. In addition, in cell
culture studies, vitamin D supplementation suppresses repli-
cation of human immunodeficiency virus in T-cells [78] and
replication of rhinovirus in cells from patients with cystic fi-
brosis [79]. In vivo, vitamin D supplementation suppresses
the replication of influenza virus in mice [80].

Interestingly, some of these vitamin D-affected viruses are
able to activate silent HERVs. Such viruses include herpes
simplex virus [81], influenza virus [82] and EBV [83]. In
addition, the involvement of EBV infection in MS has been
discussed for a long time, as the disease frequently develops
shortly after infection with EBV [84].

5. Hypothesis on the interplay between
vitamin D, ERV and EBV

To date, it remains unclear whether there is an association
between vitamin D and HERV in MS pathogenesis. Recent
data show a negative association between HERV and circulat-
ing vitamin D in MS patients [85]. Vitamin D downregulated
ERV3 in a leukemia model [86]. In addition, ERVK LTRs
have several intact and conserved binding sites for VDR re-
ceptors [87].

Interestingly, vitamin D levels are inversely correlated
with EBV load in MS patients [88]. As mentioned above,
EBV has been shown to be able to transactivate HERV, with
potential superantigen activity [83]. EBV is the causative
virus for infectious mononucleosis, and patients with infec-
tious mononucleosis have lower levels of vitamin D [89].
EBV infects B cells and immortalizes these cells into so-called
lymphoblastoid cell lines. In vivo, a strong immune response
against EBV inhibits the proliferation of lymphoblastoid cell
lines in immunocompetent hosts. Recently, it was shown
that humanized mice carrying the major MS risk allele HLA-
DRB1*15:01 were not able to adequately control EBV infec-
tion [90]. This gives a direct link between the exogenous
factor EBV and an immunologically relevant MS-associated
polymorphism. EBV is usually acquired early in life and per-
sists throughout the lifespan in infected individuals. Inter-
estingly, EBV-encoded nuclear antigen 2, a master regulator
of EBV-driven B cell immortalization, has overlapping DNA
binding sites with the vitamin D receptor [91]. It is likely
that at high vitamin D levels, the vitamin D receptor out-
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competes EBNA2 for DNA binding, which can explain the
inverse correlation between vitamin D levels and EBV. This
also reduces the expression of HERV, which is transactivated
by EBV. In addition to EBNA2, the vitamin D receptor can
bind EBNA3 (reviewed in [92]). This binding inhibits bind-
ing of the vitamin D receptor to target genes. Consequently,
at high levels of EBV nuclear antigen expression and low vi-
tamin D, EBV target genes, including transactivated HERV,
can be activated, whereas at higher vitamin D levels, this
transactivation is inhibited. The reduced anti-EBNA-1 an-
tibody levels in MS patients after vitamin D supplementation
could be due to the general anti-inflammatory effect of vita-
min D [93, 94]. EBV is polymorphic [95], and it has not been
elucidated whether all EBV variants have the same transac-
tivation activity for HERV. The vast majority of adult indi-
viduals worldwide are latently infected with EBV. Polymor-
phisms in EBV, variable activity of EBV -interfering pathways
such as the vitamin D pathway, and polymorphisms in ERV
and ERV-like genetic elements might explain the observation
that only a minority of EBV-infected individuals develop MS.

6. Conclusions

Several risk factors for MS have been described, including
polymorphisms in immunologically relevant genes, as well
as environmental factors such as EBV and vitamin D. In ad-
dition, endogenous retrovirus activation has been linked to
MS. Recent observations suggest that all these factors are
linked together. A possible model implies that the balance
between EBV nuclear antigens and activated vitamin D re-
ceptors can be shifted towards activation of HERV (low vita-
min D, high EBV antigen expression) or inhibition of HERV
activation (high vitamin D, low or absent EBV antigens). Di-
rect HERV-mediated toxicity or aberrant immune activation
by HERV components can then induce MS. This model sug-
gests multiple therapeutic targets (EBV, HERV, vitamin D
metabolism), and elucidation of the exact interplay between
these factors might lead to new treatment strategies for MS.
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